
The ZPAQ Open Standard Format for Highly Compressed
Data - Level 2

Version 2.05: Mar. 15, 2016 by Matt Mahoney.

Abstract
This document specifies the ZPAQ open standard format for highly compressed byte string data. The
format supports memory to memory compression, single file compressors, and archivers, either solid or
with independently compressed files. The compression algorithm uses an optional bitwise context
mixing model (like PAQ8 [1]), followed by arithmetic decoding, packing into bytes, and an optional
post-processing transform. The format supports future improvements in the compression of arbitrarily
complex data types without loss of compatibility because the compressed stream contains instructions
for specifying the model architecture, and byte-code programs to compute arbitrarily complex contexts
and transforms. The format may be used as a container for streaming and journaling archives, described
herein. A streaming archive may be extracted in a single pass. A journaling archive supports
deduplication and is append-only to support rollback. The standard is open, in that no license is
required to develop or use software that reads or writes ZPAQ compliant data.

Scope

This document describes the ZPAQ level 1 and 2 specifications. Level n implementations, where n ≥ 1,
shall be able to read data produced by any level m implementation, where 1 ≤ m ≤ n.

The reference decoder unzpaq is an integral part of this specification. Only the decompression
algorithm is defined.

Both this document and the program may be updated after finalization of the standard to fix software
errors or resolve discrepancies between the specification and the code with the goal of preserving
compatibility with earlier versions of the code. As of this revision, the current version is v2.05 (file
name unzpaq205.cpp).

1. Introduction
The ZPAQ open standard specifies a compressed representation for one or more byte (8 bit value)
sequences. A ZPAQ stream consists of a sequence of blocks that can be decompressed independently. A
block consists of a sequence of segments that must be decompressed sequentially from the beginning of
the block. Each segment might represent an array of bytes in memory, a file, or a contiguous portion of
a file.

ZPAQ optionally uses a context mixing data compression algorithm based on the PAQ series (PAQ8,
PAQ9, LPAQ) [1]. The decompressed stream is decoded one bit at a time, packed into bytes, and then
transformed through an optional post-processor to undo transforms that were intended to make the data
more compressible. A bit is decoded by a model, which predicts (assigns a probability to) the next bit
based on previously decoded bits, an arithmetic decoder which takes the prediction and the compressed
data and outputs the bit. The bit is fed back to the model so that it can refine future predictions.

The decoded data for each block starts with a flag to indicate whether it is should be output directly or
post-processed. In the latter case, it consists of a program followed by its input data. The output of this
program is the output of the decompresser. In either case, the output may then be divided into separate

arrays or files as described in the segment headers.

A model is a set of components that make independent predictions given a context and/or by combining
the predictions of other components. Each component has a context that is computed from the
previously decoded bits by a program described in the block header. For example, the context could be
a hash of the last 20 bits. Up to 255 components of the following types may be connected in an
arbitrary manner for each block:

• CONST - The prediction is a fixed value.

• CM - Context Model - A table maps the context to a prediction (initially p0 = p1 = 1/2) and a
counter. After a bit is decoded, the prediction is adjusted in proportion to the prediction error
and inversely proportional to the count, and the count is incremented up to a specified limit.

• ICM - Indirect Context Model - A hash table maps the context to a bit history, a state
representing bounded counts of previously seen 0 and 1 bits (initially both 0) and the most
recent bit. A second table maps the history to a prediction. After a bit is decoded, the history is
updated and the prediction is adjusted to reduce the prediction error.

• MATCH - An index maps the context to the most recent occurrence of the same context in the
output buffer. The bits following the match are predicted with a confidence that depends on the
length of the match. The index is updated every 8 bits.

• AVG - Two predictions are combined by weighted averaging. The model specifies the weights.

• MIX2 - Two predictions are combined by weighted averaging. The weight (initially 1/2) is
selected from a table by context. After decoding, the weight is adjusted in proportion to the
prediction error times the input difference times a specified learning rate. This has the effect of
favoring the most accurate component in each possible context.

• MIX - A mixer like MIX2 but with input from a contiguous block of m components. There is a
weight for each input. The weights are adjusted to favor the most accurate components, but are
not constrained to add to 1. The weights are initially 1/m.

• ISSE - Indirect secondary symbol estimation. A table maps the context to a bit history as with
an ICM. The history is used as the context to a 2 input MIX with independent weights and one
input fixed. The PAQ9A [1] model is a cascade of these ISSE with increasingly higher context
orders. After decoding, the bit history and weights are updated as with an ICM and MIX.

• SSE - Secondary Symbol Estimation. SSE takes a quantized input prediction and a context and
outputs a new (interpolated) prediction from a table. After decoding, the nearest table entry is
adjusted to reduce the prediction error as with a CM.

One possible architecture is shown below. This example is similar to PAQ8.

Fig. 1. A typical ZPAQ decompression architecture

CM

ICM

MATCH

MIX AVG SSE PostArith

Component input and output predictions are expressed as log odds. If a component predicts that a 0 or
1 will occur with probability p0 and p1 respectively, then the output is p = stretch(p1) = ln p1/p0.
Predictions are computed along a fixed sequence of components with input from earlier components.
The input to the arithmetic decoder is p1 from the last component, where p1 = squash(p) = 1/(1 + e-p) is
the inverse of stretch(p1). This has the effect of weighting models with high confidence predictions
(large magnitudes) more heavily.

Contexts hashes are computed by a program described in the block header and run once every 8 bits
during decompression, and combined with the partially decoded current byte to form a complete
context. The program runs on a virtual machine which takes the last decoded byte as input and writes
the context hashes to the components. The language, called ZPAQL, resembles an assembly language
so that it can be implemented efficiently while allowing for arbitrarily complex contexts. Another
program in the same language is used for post-processing. Both programs are called once for each byte
of input data.

The compressed data represents a high precision binary number in the range (0, 1) with the most
significant bits of the fraction first. The arithmetic decoder maintains a range (low, high), initially (0,
1), which bounds the data and shrinks as decoding proceeds. The decoder receives a prediction and
splits the range into two parts in proportion to p0 and p1. Whichever part now contains the compressed
data determines the decoded bit and the new range. Arithmetic coding effectively codes each bit Y at a
cost very close to the theoretical limit of log2 1/pY bits. To mark the end of the data, each decoded byte
is preceded by a EOS (end of segment) bit, which is 1 after the last byte, coded with p1 very near 0. The
decoder is designed so that the end of the coded segment can also be found by quickly scanning
without decompressing the data.

The model and post-processor are initialized at the start of each block and maintain state information
across segments. The arithmetic coder is initialized at the start of each segment. Segment boundaries
are invisible to the model; the block appears as a continuous stream of bytes. The purpose of segments
is to allow decompression to different destinations (e. g. to different files) and to signal the post-
processor at the end of each file.

Each segment is optionally followed by the SHA1 hash [2] of the original compressed data. A
decompresser may compute the hash of the output and compare it with this checksum to detect errors.

Level 2 allows the context model to be omitted. In this case, the data may be stored uncompressed or
decompressed solely by the postprocessor using an arbitrary algorithm. The purpose is to allow fast
storage and retrieval of lightly compressed or uncompressed data. For example, the postprocessor may
implement a fast algorithm like LZW, LZ77, or dictionary decoding.

2. Syntax
A ZPAQ level 1 stream shall have the syntax described in this section. In this description, the notation
"X ::= Y Z" means that symbol X is composed of Y followed by Z. Terminal symbols (those not
expanded further) are single bytes with range (0...255) inclusive. Symbols in parenthesis are
nonterminal. The notation X[0...n-1] means an array of X of n elements, individually X[0]...X[n-1].
When X is used as a number, it means an n-byte number in base 256, least significant byte (LSB) first,
in the range (0...256n-1). The notation X[0...] means X repeated 0 or more times. A string enclosed in
double quotes is interpreted as a sequence of ASCII bytes, e.g. "zPQ" means 122 80 81. The notation
X=n means that X is a symbolic constant with value n (in 0...255). The notation (X | Y) means either X
or Y.

ZPAQ ::= (block)[0...]

block ::= "zPQ" level(1...2) HPROG=1 hsize[0..1] (header) (segment)[0...] EOB=255

(Also, header must be hsize bytes long.)

header ::= hh hm ph pm n(0...255) (comp)[0...n-1] END=0 (hcomp) END=0

comp[i] ::= (

CONST=1 c

| CM=2 sizebits(0...32) limit

| ICM=3 sizebits(0...26)

| MATCH=4 sizebits(0...32) bufbits(0...32)

| AVG=5 j(0...i-1) k(0...i-1) wt

| MIX2=6 sizebits(0...32) j(0...i-1) k(0...i-1) rate mask

| MIX=7 sizebits(0...32) j(0...i-1) m(1...i-j) rate mask

| ISSE=8 sizebits(0...26) j(0...i-1)

| SSE=9 sizebits(0...32) j(0...i-1) start limit)

segment ::= 1 (filename) 0 (comment) 0 RESERVED=0 (ecd) eos

filename ::= c(1...255)[0...]

comment ::= c(1...255)[0...]

(Also, filename and comment must each be 0..65535 bytes in length)

ecd ::= c[0...] 0 0 0 0

(Also, if n > 0 then there are never more than 3 consecutive bytes of c = 0)

eos ::= (254 | 253 sha1[0...19])

(where sha1 is the SHA1 hash [2] of the decompressed segment)

If n = 0 then ecd (entropy coded data) is stored as a sequence of uncompressed blocks, each with a 4
byte header giving the length of the block as a 4 byte number, LSB first, and at least 1. It has the
format:

ecd ::= (elen[0..3](1...232-1) edata[0...elen-1])[0...]

If n > 0, then ecd is decoded using the context mixing model described by (comp), with contexts
computed by the program (hcomp), which is executed once for each decoded byte with that byte as
input. In either case, the decoded data (dd) for each block has the format:

dd ::= (PASS=0 output[0...] | PROG=1 plen[0...1] (pcomp) pdata[0...])

(Also, pcomp must be plen bytes long.)

If dd[0] = PASS then output[0...] is output to the destination specified by (filename) in each segment
header. Otherwise, the program (pcomp) is run once for each byte of pdata with that byte as input. The
output of the program is output to the destination specified by (filename). Both (hcomp) and (pcomp)
have the same syntax:

pcomp ::= (opcode)[0...]

hcomp ::= (opcode)[0...]

Opcodes are one to three bytes. Valid opcodes are shown in Table 1 in section 6. A program may have
invalid opcodes as long as they are not executed.

A ZPAQ level 2 compliant stream shall conform to this syntax. In addition, a stream where either
program does not halt, or executes ERROR or any reserved instruction, or where the program counter
goes outside the range of the program is not compliant.

A ZPAQ level 1 compliant stream is identical except that it requires that level = 1 and that n > 0. Thus
the comp section must not be empty and ecd must be arithmetic coded (not uncompressed). All level 1
compliant streams are also level 2 compliant.

3. Decoding
A ZPAQ decoder has the following state information:

• A virtual machine HCOMP as described by (hcomp), containing the externally accessible
context array H[0...2hh-1] with each element in (0...232-1), initially 0.

• An array of n (1...255) components, COMP[0...n-1] as described by (comp), such that COMP[i]
takes context hash H[i] (and also the output of COMP[0...i-1]) as input.

• An array of n predictions, P[0...n-1], where P[i] in (-211...211-1) is the output of COMP[i]. P[i]
represents a belief by COMP[i] that the next bit will be a 1 with probability 1/(1 + e-P[i] / 64).

• A partially or fully decoded byte C8 in (1...511).

• An arithmetic decoder (section 4).

• POST, a post-processor (section 5).

Throughout this specification, we will use the convention that array indexes are modulo the array size.
Thus if hh = 8, then H[256] = H[0].

Let the function predict(COMP[i]) assign a prediction to P[i]. The function update(COMP[i], Y)
updates the state of the component with decoded bit Y (0...1) in a way intended to reduce future
prediction errors. The function decode(p) returns Y from the arithmetic coder given a probability p in
[0,1), as described in section 4. The function write(POST, C) writes byte C (0...255) to the post-
processor (section 5). The overall structure of the decompression algorithm is:

decompress() =

For each block do

For i in (0...n-1) initialize COMP[i](comp[i])

Initialize HCOMP(hh, hm)

Initialize P[0...255] := 0, C8 := 256

Initialize POST(ph, pm)

For each segment

Select output, depending on filename

Initialize ZRLE/arithmetic decoder (sec. 4)

If (n > 0) then

While decodeBit(0) = 0 do

C8 := 1

While C8 < 256 do

For i in (0...n-1) do

P[i] := predict(COMP[i], P[0...i-1], H[i], C8)

Y := decodeBit(squash(P[n-1]) + 0.5) / 215) (Y in 0...1)

For i in (0...n-1) do

update(COMP[i], P[i], Y)

C8 := C8 * 2 + Y

write(POST, C8 - 256) (sec. 5)

H := run(HCOMP, hcomp, C8 - 256) (sec. 6)

else (n = 0, level 2 or higher only)

While (C8 := decodeByte()) != EOS do

write(POST, C8)

write(POST, 232-1) (end of segment)

Define squash() as follows. squash() is the approximate inverse of stretch(). It is not exact due to
integer roundoff. The exact definitions are:

squash(x) = floor(32768 / (1 + e-x/64)), x in (-2048...2047)

stretch(x) = round(64 * ln((x + 0.5)/(32767.5 - x))), x in (0...32767)

where round(x) = floor(x + 1/2), and floor(x) is the largest integer not greater than x.

If correctly implemented these functions should satisfy the following computations:

∑i=0...32767 3i stretch(i) = 3887533746 (mod 232)

∑i=0...4095 3i squash(i-2048) = 2278286169 (mod 232)

squash(≥ 666) = 32767 stretch(32767) = 710

squash(0) = 16384 stretch(16384) = 0

squash(≤ -666) = 0 stretch(0) = -710

P[] thus represents stretched probabilities. Squash(P[i]) is in (0...32767) and represents the belief by
COMP[i] that the next bit will be a 1 with probability (squash(P[i]) + 0.5) / 32768.

The following functions are defined for each component:

• initialize(COMP[i]) sets the initial state at the start of a block.

• predict(COMP[i], H[i], P[0...i-1], C8) writes a prediction to P[i].

• update(COMP[i], P[0...i-1], Y) modifies the state of COMP[i] to reduce the prediction error for
the decoded bit Y.

The (comp) instructions are as follows (with unused parameters omitted):

3.1. CONST c

There is no state to initialize or update. The prediction is P[i] := (c - 128) * 4

3.2. CM sizebits limit

A context model uses a table CM to map a context into a prediction. When updated, it adjusts the table
entry to reduce the prediction error. To control the learning rate, it counts predictions in each context in
a table CMCOUNT. Initialize:

SIZE := 2sizebits

CM[0...SIZE-1] := 221 (a 22 bit probability in (0...222-1)

CMCOUNT[0...SIZE-1] := 0 (count, range 0...1023)

predict(COMP[i], H[i], C8) =

CXT := H[i] XOR hmap4(C8)

P[i] := stretch(floor(CM[CXT] / 27))

update(COMP[i], Y) =

train(i, CM[CXT], CMCOUNT[CXT], limit * 4)

The train() function updates the prediction in CM[CXT] to reduce the prediction error in inverse
proportion to CMCOUNT[CXT], then updates the count up to LIMIT. The function is also used by
other models:

train(i, T, TCOUNT, LIMIT) =

ERROR := Y * 32767 - floor(T / 27)

T := T + floor(ERROR * floor(216 / (TCOUNT + 1.5)) / 29)

TCOUNT := min(LIMIT, TCOUNT + 1)

hmap4() is a function intended to improve cache locality on 64 byte aligned arrays.

hmap4(C8) =

If (C8 < 16) then return C8

Else if (C8 < 25+0) then return floor(C8 / 20) * 16 + (C8 mod 20) + 20

Else if (C8 < 25+1) then return floor(C8 / 21) * 16 + (C8 mod 21) + 21

Else if (C8 < 25+2) then return floor(C8 / 22) * 16 + (C8 mod 22) + 22

Else if (C8 < 25+3) then return floor(C8 / 23) * 16 + (C8 mod 23) + 23

hmap4() has the effect of splitting the partially decoded byte into two 4-bit nibbles. After the first
nibble is fully decoded, it occupies bits 7...4 of the output with bit 8 set to 1.

0000xxxx -> 00000xxxx

0001xxxx -> 1xxxx0001

001xxxxx -> 1xxxx001x

01xxxxxx -> 1xxxx01xx

1xxxxxxx -> 1xxxx1xxx

3.3. ICM sizebits

An indirect context model uses a hash table HT to map a context to a bit history, and then a direct
lookup table CM to map the history to a probability. When a bit is decoded, the history is updated to
reflect the new bit, and the history map is adjusted to reduce the prediction error. Initialize:

SIZE := 4 * 2sizebits (size of context map)

HT[0...SIZE-1][0...15] := 0 (checksum and 15 histories, all in 0...255)

CM[BH in (0...254)] := cminit(BH) (history map, initial probability of 1 in 0...223-1).

The next bit is predicted by computing a hash index HI from H[i] and C8 and looking up in the history
BH in the hash table HT. The low bits of HI are used as the index, and the next higher 8 bits are used as
a checksum to detect (most) hash collisions. If a hash confirmation is not found among 3 adjacent
elements, then the lowest priority element is replaced. Then HT is mapped to P[i] through CM.

predict(COMP[i], H[i], C8) =

If C8 = 1 or C8 in (16...31) then HI := find(HT, H[i] + 16 * C8) (first index into HT)

BI := hmap4(C8) (mod 16) (second index in HT, in 1...15)

BH := HT[HI][BI] (bit history)

P[i] := stretch(floor(CM[BH] / 28)).

find(HT, CXT) finds the hash index for CXT, replacing an element in HT if needed. It is defined as:

find(HT, CXT) =

CHK := floor(CXT / SIZE) (mod 256) (checksum for hash confirmation)

H0 := CXT mod SIZE (hash index)

H1 := H0 XOR 1 (candidate locations)

H2 := H0 XOR 2

If HT[H0][0] = CHK then return H0

Else if HT[H1][0] = CHK then return H1

Else if HT[H2][0] = CHK then return H2

Else if HT[H0][1] ≤ HT[H1][1] and HT[H0][1] ≤ HT[H2][1] then

HT[H0] := (CHK, 0[1...15]), return H0

Else if HT[H1][1] < HT[H2][1] then

HT[H1] := (CHK, 0[1...15]), return H1

Else CM[H2] := (CHK, 0[1...15]), return H2.

HT uses element 0 of each row as a confirmation checksum and element 1 as a priority. Element 1
represents the bit history for a context ending on a 4 bit boundary. This is the history updated most
frequently in the row, because the other histories are for contexts that are 1 to 3 bits longer. The
histories are represented by states sorted by increasing n0+ n1, the sum of the 0 and 1 bit counts. Thus,
the cache replacement policy is roughly LFU (least frequently used).

When a bit Y is decoded, the bit history is updated in CM, HM[BH] is adjusted to reduce the prediction
error.

update(COMP[i], Y) =

HT[HI][BI] := next(BH, Y)

ERROR := Y * 32767 - floor(CM[BH] / 256)

CM[BH] := CM[BH] + floor(ERROR / 4).

A bit-history has the form of an ordered triple, (N0, N1, LB). N0 and N1 represent counts of the 0 and
1 bits Y that have been used to update BH. LB represents the last update bit, either 0 or 1, or 1/2
indicating that the last bit is not stored. The values N0, N1, and LB are restricted to allow 255 possible
values of BH according to the following rules:

• If N0 > N1 then BH is allowed only if inverse(BH) is allowed, where inverse(N0, N1, LB) =
(N1, N0, 1-LB).

• If N0 + N1 is in (1...17) then LB is in (0...1) else LB = 1/2.

• If N0 = 0 then N1 is in (0...20).

• If N0 = 1 then N1 is in (0...48).

• If N0 = 2 then N1 is in (0...15).

• If N0 = 3 then N1 is in (0...8).

• If N0 = 4 then N1 is in (0...6).

• If N0 = 5 then N1 is in (0...5).

The function next(BH, Y) updates the bit history by appending bit Y but keeping BH within the
allowed set of values by discarding counts as needed. In most cases this is done by discarding part of
the opposite count, e. g. reducing N1 if Y = 0. It is defined:

next(BH = (N0, N1, LB), Y) =

If N0 < N1 then return inverse(next(inverse(BH), 1-Y))

Else if BH = (20, 0, 1/2) and Y = 0 then return (20, 0, 1/2)

Else if BH = (48, 1, 1/2) and Y = 0 then return (48, 1, 1/2)

Else if BH = (15, 2, *) and Y = 0 then return (8, 1, 0) (* means 0 or 1)

Else if BH = (8, 3, *) and Y = 0 then reutrn (6, 2, 0)

Else if BH = (8, 3, *) and Y = 1 then return (5, 3, 1)

Else if BH = (6, 4, *) and Y = 0 then return (5, 3, 0)

Else if BH = (5, 5, *) and Y = 0 then return (5, 4, 0)

Else if BH = (5, 5, *) and Y = 1 then return (4, 5, 1)

Else if Y = 1 then return bound_LH(discount(N0), N1+1, 1)

Else (Y = 0) return bound_LH(N0+1, discount(N1), 0).

discount(N) =

If N > 7 then return 7

Else if N > 5 then return N - 1

Else return N.

bound_LH(BH = (N0, N1, LH)) =

If N0 + N1 > 17 then return (N0, N1, 1/2)

Else return BH.

In the function find(HT, CXT), the meaning of ≤ when comparing bit histories is to compare their
priorities defined by the function:

priority(BH = (N0, N1, LB)) = N0 * 128 + N1 * 130 + LB.

The priority function defines a strict ordering over bit histories by increasing total count, breaking ties
by N1, then by LB. Bit histories may be sorted by priority and mapped to numbers in the range
(0...254) when used as an index into the array CM. In HT, the meaning of 0 is the initial state (0, 0,
1/2), which has the lowest priority.

The function cminit(BH) returns 223 times the estimated probability that the next update will be a 1 in
state BH:

cminit(BH = (N0, N1, LB)) = floor(222 * (N1 * 2 + 1) / (N0 + N1 + 1)).

3.4. MATCH sizebits bufbits

A match model finds the most recent context match in an output buffer and predicts the next bit as a
function of the length of the match. The match is maintained until a bit mismatch is found. On each
byte boundary, if there is no current match then it looks up the context in the index to find a new one.
On each byte boundary it updates the output buffer and the index. Initialize:

SIZE := 2sizebits

INDEX[0...SIZE-1] := 0

OFFSET := 0 (distance back to match)

LEN := 0 (length of match in bytes, up to 255)

BUF[0...2bufbits-1] := 0 (decoded data buffer in BUF[0...POS-1](0...255))

POS := 0 (number of decoded bytes)

BP := 0 (number of decoded bits after last full byte, 0...7)

predict(COMP[i]) =

If LEN = 0 then P[i] := 0

Else

BIT := floor(BUF[POS - OFFSET] / 27-BP) (mod 2) (predicted bit)

If BIT = 1 then P[i] := stretch(32768 - floor(2048 / LEN))

Else P[i] := stretch(floor(2048 / LEN))

update(COMP[i], Y) =

If BIT ≠ Y then LEN := 0

BUF[POS] := BUF[POS] * 2 + Y (mod 256)

BP := BP + 1

If BP = 8 then (a byte was fully decoded)

POS := POS + 1

BP := 0

If LEN = 0 then (look for a match)

OFFSET := POS - INDEX[H[h]]

If OFFSET ≠ 0 (mod BUFSIZE) then

While LEN < 255

 and BUF[POS - LEN - 1] = BUF[POS - LEN - OFFSET - 1]

LEN := LEN + 1

Else if (LEN < 255) then LEN := LEN + 1

INDEX[H[i]] = POS

3.5. AVG j k wt

There is no state to initialize or update.

predict(P[0...i-1]) =

P[i] := floor((P[j] * wt + P[k] * (256-wt)) / 256).

3.6. MIX sizebits j m rate mask

A MIX adaptively combines m predictions by weighted averaging, where the weights are selected by a
context. After a bit is decoded, the weights are adjusted to favor the most accurate models. Initialize:

SIZE := 2sizebits

WT[0...SIZE-1][0...m-1] := floor(216/m)

The output prediction is a weighted sum of inputs P[j...j+m-1]

predict(COMP[i], H[i], P[0...i-1], C8) =

CXT := H[i] + (C8 AND mask)

P[i] := clamp2k(floor((∑ k in (j...j+m-1) floor(WT[CXT][k] * P[k] / 256) / 256))

where clamp2k(x) bounds x to a 12 bit signed integer:

clamp32k(x) = min(2047, max(-2048, x)).

After decoding, the weights are adjusted to favor the most accurate input models for the given context.

update(COMP[i], P[0...i-1], Y) =

ERROR := floor(Y * 32767 - squash(P[i])) * rate / 16)

For k in (j...j+m-1) do

WT[CXT][k] := clamp512k(WT[CXT][k] + round(ERROR * P[k] / 213))

where clamp512k(x) = min(219-1, max(-219, x)) clamps x to a 20 bit signed integer.

3.7. MIX2 sizebits j k rate mask

A MIX2 is a MIX with m = 2 inputs, P[j] and P[k] instead of P[j...j+m-1]. Additionally, the weights are
constrained to add to 1. We may represent a MIX2 using a single weight per context. Initialize:

SIZE := 2sizebits

WT[0...SIZE-1] := 215

predict(COMP[i], H[i], P[0...i-1], C8) =

CXT := H[i] + (C8 AND mask)

P[i] = floor((P[j] * WT[CXT] + P[k] * (65536 - WT[CXT])) / 65536)

update(COMP[i], P[0...i-1], Y) =

ERROR := floor((Y * 32767 - squash(P[i])) * rate / 32)

WT[CXT] := min(65535, max(0, WT[CXT] + round(ERROR * (P[j] - P[k]) / 213)))

3.8. ISSE sizebits j

An indirect secondary symbol estimator maps a context to a bit history (like ICM), which is then used
as the context for a 2 input MIX with independent weights and one input fixed. The MIX takes P[j] and
constant 64 as inputs. The weights are initialized to 215 for P[j] and an initial guess based on CMINIT
(sec. 3.3) for the constant. The learning rate for P[j] is fixed. Initialize:

SIZE := 4 * 2sizebits (size of hash table)

HT[0...SIZE-1][0...15] := 0 (checksum and 15 histories, all in 0...255)

WT[0...254][0] := 215 (input for P[j], range -219...219-1)

WT[0...254][1] := clamp512k(stretch(floor(cminit(0...254) / 28)) * 210)

predict(COMP[i], H[i], P[0...i-1], C8) =

If C8 = 0 or C8 in (16...31) then HI := find(HT, H[i] + 16 * C8) (first index into HT)

BI := hmap4(C8) (mod 16) (second index in HT, in 1...15)

BH := HT[HI][BI] (bit history in 0...254)

P[i] := clamp2k(floor((WT[BH][0] * P[q] + WT[BH][1] * 64) / 216))

update(COMP[i], P[0...i-1], Y) =

HT[HI][BI] := next(BH, Y)

ERROR := Y * 32767 - squash(P[i])

WT[BH][0] := clamp512k(WT[BH][0] + round(ERROR * P[i] / 213))

WT[BH][1] := clamp512k(WT[BH][1] + round(ERROR / 25))

The functions cminit() and next() are defined in section 3.3.

3.9. SSE sizebits j start limit

A secondary symbol estimator (SSE) takes an input prediction P[j] quantized to 32 levels and a context
H[i] and outputs a new prediction. The prediction is interpolated between the two nearest quantized
value. The closer of those two points is then updated. The table SM is initialized to output the same
prediction as the input for all contexts. Each element is associated with a count SMCOUNT in
(start...limit*4) that determines the update rate. Initialize:

SIZE := 2sizebits

For k in (0...31) do

SM[0...SIZE-1][k] := squash(k*64 - 992) * 27

SMCOUNT[0...SIZE-1][k] := start.

predict(COMP[i]) =

CXT := H[i] + BUF[POS]

PQ := min(1983, max(0, (P[j] + 992)))

W := PQ (mod 64) (interpolation weight)

PQ := floor(PQ / 64) (quantized to 0...30)

P[i] := stretch(floor((SM[CXT][PQ]*(64-W) + SM[CXT][PQ+1]*W) / 213))

If W ≥ 32 then PQ := PQ + 1.

When bit Y is decoded, the prediction is adjusted to reduce the prediction error in inverse proportion to
its count, and the count is incremented to a maximum of limit*4.

update(COMP, Y) =

train(i, SM[CXT][PQ], SMCOUNT[CXT][PQ], limit*4) (section 3.2).

4. Arithmetic Decoder
When there are n = 0 components (permitted only if level ≥ 2), the data is stored in uncompressed
blocks, each preceded by the block length as a 4 byte number and terminated by a block of size 0.
When n > 0, the data is arithmetic coded as described in section 3. The arithmetic decoder receives bit
predictions (PR = squash(P[n-1]) + 0.5)/32768, and the compressed input stream and outputs
uncompressed bits, Y. The end of segment is decoded with PR = 0. All other bits are decoded with PR
equal to odd multiple of 1/65536 between 0 and 1.

The decoder state is initialized:

LOW := 1 (in 1...232-1)

HIGH := 232-1 (in 0...232-1, HIGH > LOW)

CURR := 0

Do 4 times: CURR := CURR * 256 + next_byte(ecd).

decodeBit(PR) returns a bit as follows:

PR := PR * 216 (an integer in 0...65535)

MID := LOW + floor((HIGH - LOW) * PR / 216)

If CURR ≤ MID then Y := 1, HIGH := MID

else Y := 0, LOW := MID + 1.

While floor(LOW / 224) = floor(HIGH / 224) do

LOW := LOW * 256 (mod 232)

If LOW = 0 then LOW := 1

HIGH := HIGH * 256 + 255 (mod 232)

CURR := CURR * 256 + next_byte(ecd) (mod 232)

Return Y.

next_byte() reads one byte of the compressed data, ecd. When decoding ends, next_byte() will have
read the 4 trailing 0 bytes so that LOW > 0, CURR = 0, HIGH = 231-1. At all other times, LOW ≤
CURR ≤ HIGH and LOW < HIGH. The next byte to read would be EOS.

When n = 0, decodeByte() returns a byte or EOS as follows:

If CURR = 0 then return EOS

Else

C := next_byte(ecd)

CURR := CURR -1

If CURR = 0 then

Do 4 times: CURR := CURR * 256 + next_byte(ecd) (mod 232)

Return C

5. Post Processing
Recall that a block decoded as described in sections 3 and 4 has the following syntax:

dd ::= (PASS=0 output[0...] | PROG=1 plen[0...1] (pcomp) pdata[0...])

This data is written to a post-processor in the decoding algorithm in section 3 by calling write(POST,
C) for each byte C in dd. POST has the following state:

PCOMP, a virtual machine, initialized PCOMP(ph, pm)

PBUF, an input buffer string, initialized to ""

write(POST, C) =

If PBUF = "" then append C to PBUF

Else if PBUF[0] = PASS then output C

Else if |PBUF| < 3 or |PBUF| < plen + 3 then append C to PBUF (where plen = PBUF[1..2])

Else run(PCOMP, pcomp, C). (run program pcomp (in PBUF[3...plen+2]) with input C)

When the first byte of dd is PROG, the output of run() is the output of the decompresser.

6. ZPAQL
There are up to 2 ZPAQL virtual machines: HCOMP in the bit prediction model, and PCOMP in the
post-processor. A machine COMP is initialized (at the beginning of a block):

COMP(hbits, mbits) =

PC := 0 (program counter)

A, B, C, D := 0 (general purpose registers in 0...232-1)

F := 0 (condition flag in 0...1)

H[0...2hbits-1] (memory, each element in (0...232-1), initialized to 0. In HCOMP,

H[i] is the input to COMP[i])

M[0...2mbits-1] (memory, each element in (0...255) initialized to 0)

R[0...255] (memory, each element in (0...232-1), initialized to 0).

A program is executed by calling run(COMP, prog, input), where prog is a string of opcodes as in table
1, and input is an input in (0...232-1).

run(COMP, prog, input) =

PC := 0

A := input

prog := (prog 0 0) (append two 0 bytes (ERROR opcodes))

Do forever

If PC not in (0...|prog|-3) then exit with an error

If prog[PC] = 255 then OPCODE = prog[PC...PC+2] (LJ long jump opcode)

Else if prog[PC] = 7 (mod 8) then OPCODE := prog[PC...PC+1], PC := PC + 2

Else OPCODE := prog[PC], PC := PC + 1

If OPCODE = ERROR or is undefined then exit with an error

Else if OPCODE = HALT then return

Else execute(OPCODE).

Opcode 0 1 2 3 4 5 6 7

0 ERROR A++ A-- A! A=0 A=R N

8 B<>A B++ B-- B! B=0 B=R N

16 C<>A C++ C-- C! C=0 C=R N

24 D<>A D++ D-- D! D=0 D=R N

32 *B<>A *B++ *B-- *B! *B=0 JT N

40 *C<>A *C++ *C-- *C! *C=0 JF N

48 *D<>A *D++ *D-- *D! *D=0 R=A N

56 HALT OUT HASH HASHD JMP N

64 A=A A=B A=C A=D A=*B A=*C A=*D A= N

72 B=A B=B B=C B=D B=*B B=*C B=*D B= N

80 C=A C=B C=C C=D C=*B C=*C C=*D C= N

88 D=A D=B D=C D=D D=*B D=*C D=*D D= N

96 *B=A *B=B *B=C *B=D *B=*B *B=*C *B=*D *B= N

104 *C=A *C=B *C=C *C=D *C=*B *C=*C *C=*D *C= N

112 *D=A *D=B *D=C *D=D *D=*B *D=*C *D=*D *D= N

120

128 A+=A A+=B A+=C A+=D A+=*B A+=*C A+=*D A+= N

136 A-=A A-=B A-=C A-=D A-=*B A-=*C A-=*D A-= N

144 A*=A A*=B A*=C A*=D A*=*B A*=*C A*=*D A*= N

152 A/=A A/=B A/=C A/=D A/=*B A/=*C A/=*D A/= N

160 A%=A A%=B A%=C A%=D A%=*B A%=*C A%=*D A%= N

168 A&=A A&=B A&=C A&=D A&=*B A&=*C A&=*D A&= N

176 A&~A A&~B A&~C A&~D A&~*B A&~*C A&~*D A&~ N

184 A|=A A|=B A|=C A|=D A|=*B A|=*C A|=*D A|= N

192 A^=A A^=B A^=C A^=D A^=*B A^=*C A^=*D A^= N

200 A<<=A A<<=B A<<=C A<<=D A<<=*B A<<=*C A<<=*D A<<= N

208 A>>=A A>>=B A>>=C A>>=D A>>=*B A>>=*C A>>=*D A>>= N

216 A==A A==B A==C A==D A==*B A==*C A==*D A== N

224 A<A A<B A<C A<D A<*B A<*C A<*D A< N

232 A>A A>B A>C A>D A>*B A>*C A>*D A> N

240

248 LJ N M
Table 1. ZPAQL opcodes

Note that the state of COMP is retained between runs except for A and PC. Opcodes are given in Table
1. The numeric value is the row number plus the column number. Opcodes in column 7 are two bytes
where the second byte is N in (0...255). Opcode 255 (LJ) is 3 bytes.

The meaning of execute(OPCODE) is as follows. Most opcodes have the form "X op Y" where X and
Y are one of A, B, C, D, *B, *C, *D, or N. A, B, C, and D are 32 bit registers with values in (0...232-1).
N is a number in (0...255), the second byte of a 2 byte opcode. *B means M[B]. *C means M[C]. *D
means H[D]. Operations on *B and *C are modulo 256. Operations on A, B, C, D, and *D are modulo
232. As usual, indexes into M and H are modulo 2mbits and 2hbits respectively. Operations are as follows:

• ERROR causes the decompresser to fail (for debugging). It is equivalent to any undefined
instruction, except that it is not reserved for future use.

• X++ means add 1 to X. (Note that *B++ increments *B, not B).

• X-- means subtract 1 from X.

• X! means X := -1-X (complement all bits).

• X=0 means set X := 0. (This is a 1 byte opcode. It is equivalent to the 2 byte opcode X=N when
N is 0).

• X<>A means swap X with A. If X is *B or *C then only the low 8 bits of A are changed.

• X=R N means X := R[N].

• R=A N means R[N] := A.

• JT N (jump if true) means if F = 1 then add ((N+128) mod 256) - 128 to PC. This is a
conditional jump in the range (-128...127) relative to the next instruction, e.g. JT 0 has no effect,
1...127 jumps forward and 128...255 jumps backwards from the next instruction.

• JF N (jump if false) means if F = 0 then add ((N+128) mod 256) - 128 to PC.

• JMP N means add ((N+128) mod 256) - 128 to PC (regardless of F).

• LJ N M (long jump) means PC := N + 256 * M, where N and M are in (0...255). This is the only
3 byte instruction.

• HALT terminates execution and returns to the calling algorithm.

• OUT means to output A. In PCOMP, A (mod 256) is written to output. In HCOMP it has no
effect.

• HASH means A := (A + *B + 512) * 773 (a useful byte hashing function for HCOMP).

• HASHD means *D := (*D + A + 512) * 773.

• X=Y assigns X := Y.

• A+=Y adds A := A + Y.

• A-=Y subtracts A := A - Y.

• A*=Y multiplies A := A * Y.

• A/=Y divides: if Y > 0 then A := A / Y else A := 0.

• A%=Y: if Y > 0 then A := A (mod Y), else A := 0.

• A&=Y computes A := A AND Y, which clears any bit in the binary representation of A if the
corresponding bit of Y is 0.

• A&~Y computes A := A AND NOT Y, which clears any bit in A that is set in Y.

• A|=Y computes A := A OR Y, which sets any bit in A that is set in Y.

• A^=Y computes A := A XOR Y, which complements any bit in A that is set in Y.

• A<<=Y (left shift): A := A * 2Y mod 32

• A>>=Y (right shift): A := floor(A / 2Y mod 32)

• A==Y (equals): If A = Y then F := 1 else F := 0.

• A<Y (less than): If A < Y then F := 1 else F := 0.

• A>Y (greater than): If A > Y then F := 1 else F := 0.

7. Compliance
A program that accepts any data that conforms to the requirements in sections 2 through 6 in this
document is ZPAQ level 2 compliant. There is no requirement for a compliant program to behave in
any particular way for any non conforming data. There is no requirement that a compressor that
produces ZPAQ level 2 data shall support all of the features described. However, it is the responsibility
of the compressor to produce compliant data.

A decompresser might not have enough memory to decompress a compliant stream. A decompresser is
said to be compliant up to its memory limit if it will accept all streams that require less memory. The
memory requirement may be computed from information in the block header. It is 4*2hh + 2hm + 4*2ph +
2pm bytes plus the following by component in (comp), in bytes, where SIZE = 2sizebits.

• For each CM, 4*SIZE

• For each ICM, 64*SIZE + 1024

• For each MATCH, 4*SIZE + 2bufbits

• For each MIX2, 2*SIZE

• For each MIX, 4*SIZE*m

• For each ISSE, 64*SIZE + 2048

• For each SSE, 128*SIZE.

A block header begins with "zPQ" followed by LEVEL=1 or LEVEL=2 to indicate the compression
level supported. Future versions will use (3...127) in increasing order. Each level L shall support
reading all levels in the range (1...L). Levels (128...255) are reserved for private use and are not part of
this or any future standard. Likewise, HPROG=1, PROG=1, and RESERVED=0 shall not use values in
the range (128...255) in future versions for the same reason. HPROG and PROG are intended to
indicate the language used in the (hcomp) and (pcomp) sections, respectively.

LEVEL=0 is experimental. Different versions of level 0 programs are not required to be compatible
with each other or with level 1.

When a block or sequence of blocks is embedded in a stream of non-ZPAQ data, it is recommended
that the first block be preceded by the following 13 byte string to help locate it:

37 6B 53 74 A0 31 83 D3 8C B2 28 B0 D3 (in hexadecimal).

The value was chosen randomly. In addition, non-ZPAQ data following a block sequence, if any,
should not begin with "zPQ" (7A 50 51 hex). A stream may contain more than one block sequence. A
locator tag is useful for marking the start of the data in a self extracting archiver.

8. Archive Format
This section describes streaming and journaling archives and indexes. A streaming archive is a simple
collection of files. A journaling archive is designed to be append-only and to store multiple dated
versions of files for incremental backup with deduplication and rollback capability. An index is a
journaling archive with only file metadata.

In streaming format, file names are stored in the filename field. An empty field indicates a continuation
of the previous file. If the filename field of the first segment of the first block is empty, then no file
name is specified. The comment fields of all segments must not end with the 4 bytes “jDC\x01”.

In journaling format, all blocks contain exactly one segment. The comment field always has the form
“size jDC\x01” where “size” is the uncompressed size as a decimal string in range
(“0”..”4294967295”) (or 0..232-1) followed by a single space, and “\x01” is a single character with
ASCII value 1. An archive may not contain both streaming and journaling blocks. In journaling format,
only blocks with a first segment filename field in the following 28 character format and
lexicographically greater than the previous filename are allowed:

 “jDC” year[4](1900..2999) month[2](01..12) day[2](01..31)

hour[2](00..59) minute[2](00..59) second[2](00..59)

type(c,d,h,i) n[10](0000000001..4294967295)

for example, “jDC19991231235959c0123456789”. Characters 3..16 give the transaction date in
universal (UTC) time, which must be in the past. The uncompressed contents of each block has the
following byte syntax according to the type field in character 17:

c: csize[8]

d: fragment[f][fsize[n..n+f-1]] (0[4]|n[4]) 0[4] | (fsize[n..n+f-1][4] (0[4]|n[4]) f[4])

h: bsize[4] (sha1[20] fsize[4])[n..n+f-1]

i: (0[8] name[] 0 | date[8] name[] 0 na[4](0..65535) attr[na] ni[4] ptr[ni][4])[]

where n matches decimal characters 18..27 of the filename. Numbers are LSB first. fsize must be in the
range (0..231-1). name must be (0..65535) bytes long.

In type c blocks, csize is the total compressed size of the type d block sequence that follows in the
current transaction. A value in (263..264-1) indicates the end of the archive. All blocks that follow should
be ignored. Otherwise, advancing the archive file pointer by csize should advance to the next block that
is not type d or to end of file, whichever comes first.

Type d blocks contain a sequence of f variable sized fragments with IDs consecutively numbered
n..n+f-1. No two fragments anywhere in the archive may have the same ID. No ID may be less than n
given in the preceding type c block with the same date. No ID may be 0. The fragment size list fsize is
optional (to allow recovery of damaged h blocks). If omitted, f[4] is 0. n[4] may either be 0 or match n
from the filename.

There is one type h block for each type d block. Both blocks in the pair have the same n. In a type h

block, bsize gives the compressed size of the corresponding d block. This is followed by a list of the
SHA-1 hashes and sizes of the fragments of that d block. The fsize list of sizes, if present in the d block,
must agree in both blocks.

Type i blocks describe edits to the central filename index as processed in order from the beginning of
the archive. An edit may either be an update (new or existing file) or a deletion. A deletion is indicated
by a date field of 0. Deleted files are not extracted. Otherwise, date, when converted to decimal has the
14 digit format YYYYMMDDHHMMSS giving the last modified date (UTC) in the same format as in
the filename field. The name field is the filename in UTF-8 format, using “/” as the path separator
character. A list of na attribute bytes follow, and then a list of ni fragment IDs. A file is extracted by
concatenating the corresponding fragments, which must appear earlier in the archive.

The attr string may be of any length. The meaning is defined if it has one of the following prefixes:

“w” windows_attr[4]

“u” unix_attr[2]

windows_attr is interpreted as returned by the Windows function GetFileAttributes() defined in
windows.h. unix_attr is interpreted as type mode_t as defined in sys/stat.h and returned in the mode
field of the Unix/Linux function stat().

An index is a journaling archive with no d blocks. Thus, csize must be 0 except to mark the end of the
archive.

9. Encrypted Format
An archive of length n bytes may be encrypted with AES-256 [4] in CTR mode using a 32 byte salt
prefix as follows:

salt[0..31] (archive[i=32..n+31] xor AES256(key, salt[0..7] (i/16)[7..0]))

where the 32 byte key is derived from a SHA-256 [3] hash of a password and the salt using Scrypt [5]
as follows:

key = Scrypt(SHA256(password), salt[0..31], N=16384, r=8, p=1)

The password string must contain at least one byte and not contain any NUL (0) bytes.

To decrypt, the 32 byte salt prefix of the n + 32 byte ciphertext is removed. Then the remaining n bytes
is XORed with a keystream E(IV+2), E(IV+3), E(IV+4)..., where E() means encryption with AES-256,
and IV is a 16 byte number in big-endian (MSB first) format consisting of the first 8 bytes of the salt
followed by 8 zero bytes.

The following 61 byte encrypted string:

d3 77 41 c5 6a a0 f9 cf 64 11 97 2e 27 0e 7a ae

09 b1 9e 87 ef b8 82 79 3e 18 a1 13 e6 1d f5 3f

a1 41 75 c0 b5 1b 9b ef 16 83 a6 bd c3 1d 34 9e

08 84 27 ee 77 7f ed 95 25 1c cf 26 a5

should decrypt to the following 29 byte minimal archive with 3 byte password “abc”:

7a 50 51 02 01 07 00 00 00 00 00 00 00 00 01 00

00 00 00 00 00 01 00 00 00 00 00 fe ff

Notes:

The format is designed to provide fast random access without decrypting the whole archive.

No authentication is provided. An attacker with write access who knows or can guess any bits of the
plaintext can arbitrarily set those bits without knowing the password or key.

Scrypt is designed to slow down password guessing attacks. It requires 128Nr bytes = 16 MiB memory
and 1536Nrp = 3 x 226 32-bit operations (add, xor, rotate) to compute the key from the password. It uses
repeated rounds of salsa20/8 [7] and a final step of HMAC-SHA256 [8].

The salt is not secret but should be chosen randomly to make it unlikely that two archives will use the
same salt. If two archives are encrypted with the same password and salt then the XOR of the
encrypted archives will reveal the XOR of the two plaintexts without knowing the password or key.
Also, a random salt makes it impractical to generate password cracking tables in advance.

The minimal archive in the test vector above should decompress to an empty string. It encodes one
level-2 block with no tag, no compression model, no post-processor, and one segment with no
filename, comment, or checksum.

10. Implementation Notes
This document does not specify a compression algorithm. However, it will generally be the case that
the models (on the input side of the arithmetic decoder) will be identical for compression and
decompression. For the arithmetic coder, range splitting and normalization would be identical, except
that when the high bits of the range are shifted out, they are written to the output. Immediately after
coding EOS, the compressor should write an end of segment marker (0 0 0 0). It is not necessary to
flush the encoder.

It is the responsibility of the compressor to ensure that preprocessing is exactly reversed by post-
processing. The recommended way to do this is to test during compression by running both transforms
and comparing with the original.

Memory requirements for a typical decompresser implementation can be calculated almost entirely
from information in the block headers. Compression typically requires at least as much memory as
decompression.

The design is optimized for arrays aligned on 64 byte cache line boundaries (in particular, ICM and
ISSE).

The following is a recommendation for choosing fragment boundaries to support deduplication
compatibility in journaling archives. Fragments should not span file boundaries. Fragment sizes should
otherwise be in the range 4096..520192. A fragment not of maximum size or ending at end of file
should have, and no prefix of length 4096 or longer should have, a 32 bit hash of 65535 or less, where
the hash of n byte string x[0..n-1] (each byte in 0..255) is defined as follows:

hash(“”) = 0 (empty string).

hash(x[0..n-1]) = (hash(x[0..n-2]) + x[n-1] + 1) * 314159265 (mod 232) if x[n-1] is predicted.

hash(x[0..n-1]) = (hash(x[0..n-2]) + x[n-1] + 1) * 271828182 (mod 232) if x[n-1] otherwise.

where x[n-1] is predicted (by an order 1 model) if the last occurrence of the value of x[n-2] in x[0..n-3]
is followed by the same value as x[n-1], or if either n < 3 or x[n-2] does not occur in x[0..n-3] and
x[n-1] is 0. For example, in the string “THIS IS A TEST”, the second “S” and second space are

predicted.

An archive may be either a single file or a concatenation of multiple files matching a common filename
pattern and numbered consecutively starting with 1, for example part01.zpaq, part02.zpaq... . A multi-
part archive is encrypted with a single keystream with the salt in the first 32 bytes of part 1.

Optionally, a multi-part archive may have an index with part number 0 (e. g. part00.zpaq). If it is
present, then the archive must be in journaling format with no streaming blocks, and each part must
consist of exactly one update (i. e. with exactly one c block, which must be the first block). The index
must be a copy of the concatenation of the other parts in numerical order except that the d blocks are
omitted and the c blocks have a csize value of 0. If the archive is encrypted, then the index is encrypted
separately with the same password and the same salt except that salt[0] is replaced with salt[0] XOR
0x4D (ASCII 'M').

11. Intellectual Property
I (Matt Mahoney) am not aware of any patents protecting any of the techniques needed to fully
implement a compression or decompression algorithm or product according to this specification. I have
not filed for patents on any of the techniques described here and will not do so.

This document may be copied and distributed freely as long as the contents are not modified.

unzpaq version 2.05 is provided as-is, with no warranty. I, Matt Mahoney, release this software into
the public domain. This applies worldwide. In some countries this may not be legally possible; if so: I
grant anyone the right to use this software for any purpose, without any conditions, unless such
conditions are required by law.

12. Revision History
Mar. 12, 2009. Original level 1 final specification released.

Sept. 29, 2009. Revision 1 adds a recommendation in section 7 for embedding in non-ZPAQ data.

Feb. 1, 2012. Level 2 standard released. Allows the context model to be omitted (n = 0). Also in the
definition of find() in section 3.3, the following line changes “≤” to “<” to conform to the level 1 and 2
reference implementations.

Else if HT[H1][1] < HT[H2][1] then

Sept. 28, 2012. Level 2 revision 1 inserts section 8 “Archive Format”, incorporating some material
from section 7.

June 3, 2013. Level 2 revision 2 makes journaling “d” block redundant fragment lists and fragment ID
optional in section 8. Adds a recommendation for fragmentation to section 9.

Jan. 16, 2014. Level 2 revision 3 inserts section 9, “Encrypted Format”. Sections 9-11 are renumbered
10-12. Adds references 3..8.

Nov. 18, 2014. Level 2 revision 4 updates section 10 with a recommendation for multi-part archives
and indexes. It corrects the hash constant “271827182” to “271828182” to conform to existing
implementations.

Mar. 15, 2016. Level 2 revision 5 updates the archive format description. Mixed streaming and
journaling formats are not allowed. Limits sizes of streaming filename and comment fields, journaling
file names, attribute strings, fragments, and uncompressed blocks.

References
1. M. Mahoney, PAQ data compression programs. 2000-2008.
http://cs.fit.edu/~mmahoney/compression/

2. D. Eastlake, P. Jones, RFC 3174, US Secure Hash Algorithm 1, 2001,
http://www.faqs.org/rfcs/rfc3174.html

3. FIPS 180-4, Secure Hash Standard (SHS), 2012, http://csrc.nist.gov/publications/fips/fips180-4/fips-
180-4.pdf

4. FIPS 197, Advanced Encryption Standard (AES), 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

5. C. Percival, Stronger Key Derivation via Sequential Memory-Hard Functions, Proc. BSDCan'09,
2009. http://www.tarsnap.com/scrypt/scrypt.pdf

6. B. Kalinski, RFC-2898, Password-Based Cryptography Specification, Version 2.0, 2000,
http://www.ietf.org/rfc/rfc2898.txt

7. D. J. Bernstein, The Salsa20 Core, 2005, http://cr.yp.to/salsa20.html

8. H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed Hashing for Message Authentication, RFC-
2104, 1997. http://tools.ietf.org/html/rfc2104

	Abstract
	Scope

	1. Introduction
	2. Syntax
	3. Decoding
	3.1. CONST c
	3.2. CM sizebits limit
	3.3. ICM sizebits
	3.4. MATCH sizebits bufbits
	3.5. AVG j k wt
	3.6. MIX sizebits j m rate mask
	3.7. MIX2 sizebits j k rate mask
	3.8. ISSE sizebits j
	3.9. SSE sizebits j start limit

	4. Arithmetic Decoder
	5. Post Processing
	6. ZPAQL
	7. Compliance
	8. Archive Format
	9. Encrypted Format
	10. Implementation Notes
	11. Intellectual Property
	12. Revision History
	References

