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Abstract

Storage and transmission of the data produced by mod-
ern DNA sequencing instruments has become a major con-
cern, which prompted the Pistoia Alliance to pose the Se-
quenceSqueeze contest for compression of FASTQ files.

We present several compression entries from the compe-
tition, Fastqz and Samcomp / Fqzcomp, including the win-
ning entry. These are compared against existing algorithms
for both reference based compression (CRAM, Goby) and
non-reference based compression (DSRC, BAM) and other
recently published competition entries (Quip, SCALCE).
The tools are shown to be the new Pareto frontier for FASTQ
compression, offering state of the art ratios at affordable
CPU costs.

All programs are freely available on SourceForge.
Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp:
https://sourceforge.net/projects/fqzcomp/, and samcomp:
https://sourceforge.net/projects/samcomp/.

Introduction

Data volumes from next-generation sequencing in-
struments are a major issue for storage and data
transfer costs. Between 2008 and 2012 sequencing
costs dropped 1000 fold (K. A. Wetterstrand, http://
www.genome.gov/sequencingcosts/ accessed on June 26,
2012) giving an approximate cost halving every 5 months.
A long term trend for storage shows a cost halving every 14
months (M. Komorowski, http://www.mkomo.com/cost-
per-gigabyte accessed on August 20, 2012). It is tempting to
believe that data compression will resolve these problems,
but with exponential growth rates it can do no more than
delay the inevitable time when organizations will need
to consider whether they truly need to retain everything.
However, a good case can be made [1] that some samples
will always be worth storing in their raw DNA sequence
form. Improving sequence compression is an essential
part in reducing the dependency on storage and network
bandwidth.

In October 2011 the Pistoia Alliance formally announced
a competition to compress next-generation sequencing data.
Entries to the competition were run on a virtual machine
in the Amazon Cloud (http://aws.amazon.com/) against a
private test set, with results publicly displayed on a leader-
board (at http://www.sequencesqueeze.org) throughout the
competition. The data to be compressed was in FASTQ for-
mat [2], an industry standard format supported by a wide
variety of next generation sequencing manufacturers includ-
ing the data tested here, produced by Roche 454 [3], Life

Technologies SOLiD [4] and Illumina GA / HiSeq [5].

There has been considerable work on compression of se-
quencing data, with some researchers specializing only on
sequence compression [6,7] or quality value compression [8,9]
with others supporting full FASTQ file compression; G-
SQZ [10], SlimGene [11], SOLiDzipper [12], DSRC [13],
Quip [14], SCALCE [15] and KungFQ [16]. Related to
this is work on SAM/BAM [17] compression including Goby
(F. Campagne, http://campagnelab.org/software/goby/ ac-
cessed on July 19, 2012), CRAM [18], SAMZIP [19] and
NGC [20]. Overviews of compression within bioinformatics
can be found in [21] and [22].

We compare our work only against other full FASTQ
and SAM file compressors and against more general purpose
compression algorithms like gzip [23] and bzip2 (J. Seward,
http://www.bzip.org accessed on August 16, 2012). Both
authors submitted multiple entries to the SequenceSqueeze
competition. J. Bonfield submitted the Fqzcomp and Sam-
comp variants while M. Mahoney submitted Fastqz variants.
Fqzcomp and Fastqz both accept FASTQ files as input, with
the latter also taking an optional genome sequence to per-
form reference based compression. Samcomp also performs
reference based compression but requires previously aligned
data in the SAM format instead.

Results

Overview

A brief summary of all successful entries to the Se-
quenceSqueeze competition can be seen in figure 1. We
observe a wall where entries were unable to improve on com-
pression ratio without an exponential increase in both CPU
time and memory. We believe this wall represents close prox-
imity to the Kolmogorov complexity [24], beyond which fur-
ther compression is only achievable via lossy methods or use
of additional knowledge such as the target genome. More
information on the contest results is available in the supple-
mentary material.

We further compare and analyze the programs presented
here – Fastqz, Fqzcomp and Samcomp – to the other top en-
trants of the SequenceSqueeze contest (Daniel Jones’ Quip
and the IEETA’s SeqSqueeze1 programs), the previously
published DSRC tool and the general purpose gzip and bzip2
compression programs.

With most entrants to the competition submitting multi-
ple entries, and seeing the results live, there may have been
accidental over-fitting of the (unseen) test set. Hence we
tested the programs against a number of other public data
sets. We chose a representative subset of the same data used
in the DSRC paper along with SRR065390 1.

The data sets used for testing are presented in Ta-
ble 1. Not all programs tested supported all types of data.
SRR003177 consisted of variable length 454 data with some
(erroneously) up to 4Kb long. Fastqz cannot deal with vari-
able length data while SeqSqueeze1 has a sequence length
limit of 1Kb which we increased to allow this data to com-
press. SRR007215 1 contains SOLiD colour-space data.
This is not supported by Quip or Fastqz, while Fqzcomp
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Figure 1. SequenceSqueeze results: real time vs compression ratio. Each mark represents a different
entry, coloured by author. Ibrahim Numanagic’s entry had a minor decoding problem causing a minority of
read-names to mismatch. All other entries plotted here were lossless. The entries have been broken down into
reference based (A) and non-reference based (B) solutions. A clear wall can be seen in the non-reference methods
requiring exponential growth in CPU time for minor linear improvements in compression ratio.

Table 1. Data sets used for program evaluation

Run ID Platform Species No. Seqs Length File size Depth
SRR003177 454 GS FLX Titanium Human 1,504,571 564 1,754,042,560 0.28x
SRR007215 1 ABI SOLiD System 2.0 Human 4,711,141 25 689,319,444 0.04x
SRR027520 1 Illumina GA II Human 24,246,685 76 5,055,253,238 0.61x
SRR065390 1 Illumina GA II C.Elegans 33,808,546 100 8,819,496,191 33.8x

The data sets used to test the compression tools along with the sequencing platforms that produced them. Length
is the average sequence length. Depth is the average genome depth assuming 100% of sequences in the data set
can be aligned.

needed fixes to support a fastq format variant used in this
data set. SRR027520 1 is a low coverage 1000 Genomes
project Illumina run [25]. SRR065390 1 is a 33 fold cover-
age Caenorhabditis Elegans genome, chosen to demonstrate
compression ratios on smaller and deeper genomes. All pro-
grams supported the Illumina data sets.

Table 2 shows the program names, versions and command
line arguments used for testing. These were the latest ver-
sions at the time of manuscript preparation.

Non-reference based

Figure 2 shows the non-reference based compression of the
four data sets. Some programs are presented more than once

showing the effect of adjusting the command line options.
All tests were performed on a machine with Intel Dual-Core
E5300 CPU (2.6GHz) with 6GB of memory, running the
Ubuntu 10.04 Linux operating system.

Table 3 shows the same data in more detail including
memory consumption and decompression times. We see a
clear trade-off between time, memory and compression ra-
tio. The fastest and lowest memory programs tend to pro-
duce larger files. Largest of all is Fastqz in fast mode. This
only performs the preprocessing steps to quickly pack mul-
tiple bases and confidence values together without any sub-
sequent encoding and compression. In isolation it is not
particularly small. It may be improved by applying a fast
general purpose compression program to the output files, but
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Table 2. Program names, versions and options

Name Version Compression
mode

Options

SCALCE 2.3 fast -B 1G -T 2
slow -c bz -T 2

dsrc 1.01 fast
slow -l -lm2048

SeqSqueeze1 1.0(svn) slow -h 4 1/5 -hs 5 -b 1:3 -b 1:7 -b 1:11 -b 1:15 1/20 -bg 0.9 -N -s 1:1 -s 1:2 1/5 -s 1:3
1/10 -s 1:4 1/20 -ss 10 -sg 0.95

fastqz 1.5 fast e
slow c

fqzcomp 4.4 fast -n1 -q1 -s1
medium -n2 -q2 -s6
slow -n2 -q3 -s8+ -b

quip 1.1.1 fast
slow -a

sam comp1 0.7 -
sam comp2 0.3 -
cramtools 1.0 - –preserve-read-names -L m999
goby 2.01 - -x MessageChunkWriter:codec=hybrid-1 –preserve-soft-clips –preserve-read-names

–preserve-all-mapped-qualities
samtools 0.1.18 -
gzip 1.3.12 -
bzip2 1.05 -

Program version names, numbers and common command line options. Additional options were sometimes required to specify the name of the
reference used, but this differed per data set.

Table 3. Compression rates and ratios

SRR003177 (LS454) SRR007215 1 (SOLiD)
Program Mode Ratio C.R. D.R. Mem Ratio C.R. D.R. Mem
gzip 0.3295 8.2 91.6 1 0.2524 16.6 111.6 1
bzip2 0.2681 8.3 12.0 7 0.1987 4.9 23.1 7
SCALCE fast (a) (b)

slow (a) (b)
DSRC fast 0.2422 33.7 51.1 61 0.1605 19.1 55.3 11

slow 0.2372 18.2 47.1 1979 0.1605 19.5 51.7 11
quip fast 0.2275 16.9 15.0 398 (b)

slow 0.2275 2.9 2.8 766 (b)
fastqz fast (a) (b)

slow (a) (b)
fqzcomp fast 0.2236 28.3 34.1 40 0.1455 33.8 54.9 39

medium 0.2170 18.1 19.4 312 0.1422 27.2 38.2 310
slow 0.2132 6.5 6.5 4407 0.1419 13.8 16.8 4405

SeqSqueeze1 slow 0.2021 0.4 0.4 4587 0.1465 1.1 1.1 4888

SRR027520 1 (Illumina) SRR065390 1 (Illumina)
Program Mode Ratio C.R. D.R. Mem Ratio C.R. D.R. Mem
gzip 0.3535 12.2 45.4 1 0.2805 8.9 44.3 1
bzip2 0.2905 7.0 3.0 7 0.2250 8.2 4.1 7
SCALCE fast 0.2709 9.4 5.4 2212 0.1675 9.1 6.1 2181

slow 0.2572 7.8 3.1 5162 0.1635 7.3 5.8 5257
DSRC fast 0.2507 24.7 2.9 18 0.1912 26.4 3.2 20

slow 0.2477 13.5 2.2 1058 0.1524 15.0 3.9 1965
quip fast 0.2240 16.8 3.7 396 0.1622 17.7 4.5 391

slow 0.2219 8.3 0.9 777 0.1584 8.9 1.7 775
fastqz fast 0.3887 36.1 2.8 1 0.3456 37.1 0.6 1

slow 0.2195 4.6 3.8 1459 0.1340 4.7 3.8 1527
fqzcomp fast 0.2243 31.4 2.5 44 0.1733 32.7 9.4 40

medium 0.2196 22.0 1.7 312 0.1524 22.4 0.8 311
slow 0.2172 8.2 8.3 4407 0.1341 8.3 8.5 4406

SeqSqueeze1 slow 0.2187 0.6 0.6 4919 0.1239 0.5 0.5 4930

SRR003177 is 1.5M human sequences of variable length (avg 564bp); SRR07215 1 is 4.7M human seqs of length 25bp plus 1 primer base;
SRR027520 1 is 24.2M human seqs of length 76bp; SRR065390 1 is 33.8M C.Elegans seqs of length 100bp. Ratio is the compressed size
divided by the uncompressed size. C.R. and D.R. are compression and decompression rates in MB/s. (a) Program does not support variable
length sequences. (b) Program does not support SOLiD data.

this option was not explored. Next largest are the general
purpose gzip and bzip2 programs. With the exception of the
very quick decompression in gzip these tools look like a poor
trade-off between size and speed with several tools outper-
forming them in all metrics, demonstrating that file format

specific knowledge is important for efficient compression.

The fast and medium compression speeds of Fqzcomp
demonstrate comparable or better speed than DSRC and
SCALCE while achieving significantly higher compression
ratios. However note that DSRC provides random access
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Figure 2. File size ratios vs real time to compress. SRR007215 is SOLiD data, SRR003177 is 454 data,
while SRR02750 and SRR065390 are Illumina data at shallow and deep depths respectively. Not all programs
support all types of data.

to the compressed files. DSRC was tested with and without
the LZ encoding step. On shallow data (where most genome
bases are covered 1-2 times only) it can be seen to have
minimal impact on compression ratios, while harming com-
pression speed. However LZ encoding demonstrably gives a
substantial improvement on small and/or deeply sequenced
genomes.

For highest compression ratio there is no clear winner with
Fqzcomp, Fastqz and SeqSqueeze1 varying in rank by data
set. The context mixing used in the IEETA SeqSqueeze1
entry comes at a large cost in CPU usage making it less use-
ful. Fastqz also utilizes context mixing but the use of multi-
threaded code and initial preprocessing to reduce the input
data volumes offset the CPU costs considerably. Fqzcomp
is the fastest of the three and comparable to the best com-
pression ratios on all data sets except the deep C. Elegans
set, but requires high memory to achieve high compression
ratios.

To get a better understanding of the relative strengths

and weaknesses we chose SRR027520 1 and SRR065390 1
to study the compression of individual identifier, sequence
and quality components. These data sets were chosen due to
being supported by all programs. We also tested these data
sets using reference based compression tools. Table 4 pro-
vides a break down by data type in a variety of conditions,
showing the average number of bits per complete identifier,
per individual base-call and confidence value.

Fastqz outputs separate files per data type while Fqzcomp
and Quip report separate figures upon completion. For other
tools we either modified them to omit specific data types
(Samcomp) or produced multiple data files with identifiers,
sequences and/or quality values absent and measured the
difference to derive the approximate size of each component.

With the fastq in the original order as downloaded from
the NCBI and without using a reference to align against, we
see that Fqzcomp and Fastqz are largely comparable in size.
Quip is also comparable on shallow data, but is unable to
exploit the high sequence redundancy in the deep data set.
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Table 4. Compression by data type

SRR027520 1 SRR065390 1
Prog Ref Sort Ratio ID Base Qual C.R. Mem Ratio ID Base Qual C.R. Mem

Raw FASTQ N ID 1.0000 419.9 8 8 1.0000 454.9 8 8
Fastqz N ID 0.2195 11.7 1.71 2.96 3.8 1459 0.1340 15.6 1.11 1.53 3.8 1527
Fqzcomp(medium) N ID 0.2196 11.3 1.72 2.95 22.0 312 0.1524 14.8 1.52 1.52 22.4 311
Fqzcomp(slow) N ID 0.2172 11.3 1.68 2.94 8.2 4407 0.1341 14.8 1.16 1.49 8.3 4406
Quip N ID 0.2219 11.2 1.78 2.95 8.3 777 0.1584 14.7 1.64 1.51 9.0 776
Fastqz Y ID 0.1816 11.7 0.88 2.96 3.2 1365 0.1000 15.6 0.40 1.53 4.7 1352
Samcomp2 Y ID 0.1810 19.4 0.75 2.94 13.6 1079 0.1022 19.9 0.43 1.49 17.1 365
Quip Y ID 0.1885 22.2 0.90 2.95 16.4 1515 0.1088 21.3 0.54 1.52 19.1 807
Fastqz N pos 0.2414 52.1 1.66 2.95 3.2 1527 0.1397 64.1 0.74 1.54 4.0 1527
Samcomp1 N pos 0.2360 49.8 1.59 2.94 15.1 315 0.1147 58.7 0.29 1.50 21.8 288
Samcomp2 N pos 0.2628 49.8 2.18 2.94 13.5 341 0.1982 58.7 2.04 1.49 15.2 341
Quip N pos 0.2453 50.5 1.78 2.94 9.3 776 0.1890 58.6 1.83 1.53 11.2 775
SAMtools (BAM) N pos 0.4013 137.8 2.79 4.21 13.7 1 0.2344 150.9 0.94 2.47 16.7 1
Fastqz Y pos 0.2009 52.1 0.77 2.95 2.9 1406 0.1184 64.1 0.29 1.54 4.4 1352
Samcomp1 Y pos 0.1852 49.8 0.47 2.94 15.7 378 0.1116 58.7 0.23 1.50 21.9 296
Samcomp2 Y pos 0.1920 49.8 0.62 2.94 14.2 1079 0.1163 58.7 0.33 1.49 20.1 365
Quip Y pos 0.1926 49.2 0.64 2.94 16.6 1516 0.1165 58.6 0.32 1.53 19.6 808
Gobya Y pos 0.2706 99.5 0.62 4.01 4.8 1797 0.1587 110.6 0.28 1.93 6.8 1250
CRAM Y pos 0.2504 92.1 0.58 3.71 5.0 1514 0.1676 105.9 0.27 2.17 7.9 898

Showing the compressed file size break down by bits per sequence identifier, per base-call and per quality value. In some cases these sizes refer
to cases where a reference was previously used to map, but it has not been used during compression (e.g. BAM). The ID, Base and Qual
columns are the number of bits required to store the complete sequence identifier, a single base nucleotide and a single quality value
respectively. The C.R. column is the compression rate in MB per second. Mem is the amount of memory required during compression.
References used were human hg19 and C.Elegans WS233. Non-reference based Quip used the ”-a” assembly option for high compression
mode. aGoby does not store unmapped data. The Goby figures have been estimated by adding 2 bits per absent base-call and scaling up the
name and quality figures by the percentage of unmapped reads.

Keeping in the original name-sorted order but aligning
against a reference shows some disparity. As Fqzcomp has
no support for reference base compression and Samcomp1 re-
quires genome position sorted data we only compare Fastqz,
Samcomp2 and Quip. Note that Quip in the original form as
submitted to the competition did not support SAM format
or reference based compression. Samcomp2 and Fastqz, in
this configuration of using a reference against unsorted data,
came top in the SequenceSqueeze contest by compression
ratio. The sequence name encoding in Samcomp2 is weaker
then Fastqz, but on shallow data the sequence encoding is
better, leading them to trade places between the two data
sets with no overall leader. Quip is in third place on both
data sets but is slightly faster. As expected in all three cases
it is clear that the improvement to base-call storage is con-
siderable, becoming the smallest component of total file size
(while being the most significant and useful component).

More interesting are the results of sorting the aligned data
by the position within the genome, but without utilization
of the genome sequence as a reference to encode differences
against. It may seem strange to not exploit this knowledge,
but this use case represents storage of de-novo sequence as-
semblies for which no reference is known and is also the the
usual form of encoding within BAM files. BAM is consider-
ably larger for all components, particularly so with sequence
identifiers. It should be noted again that these sequence
identifiers are long as they contain the NCBI “SRR[num]”
identifier (now in a random order) as well as the original ma-
chine produced identifier. Except for SAMtools all programs
in this test have roughly comparable identifier and quality
encoding metrics, with the significant differences coming in
sequence encoding. Samcomp1 significantly outperforms the
other tools, most notably so in the deep C.Elegans data set
giving just 0.29 bits per base - close to the 0.23 best case

when a reference is specified. This is due to the use of per-
position models.

Reference based

Finally moving to reference based compression of position
sorted files allows a direct comparison to existing refer-
ence based compression programs; CRAM, Goby and Quip.
Fastqz operates on a FASTQ file and includes its own fast
alignment algorithm. Some metrics on the performance of
this can be seen in Table 5. All the other tools listed operate
on SAM or BAM files containing previously generated align-
ments. The time taken to generate these alignments has not
been taken into consideration in the compression rate figure.

Table 5. Fastqz alignment benchmarks

Data type Mode Unaligned size Aligned size
Identifier fast 251,697,610 251,697,610
Alignment fast n/a 183,313,663
Sequence fast 639,049,273 49,174,693
Quality fast 867,178,255 867,178,255
Total fast 1,757,925,138 1,351,364,221
Identifier slow 47,861,283 47,861,283
Alignment slow n/a 105,063,319
Sequence slow 503,239,070 30,852,888
Quality slow 574,112,937 574,112,937
Total slow 1,125,213,290 757,890,427

Size of data components in the public SequenceSqueeze test set
SRR062634 (6,345,444,769 bytes uncompressed).

All programs perform well for base compression, although
the clear winner in this category is the per-position model
used in Samcomp1. As before, identifiers and quality strings
are comparable between Fastqz, Samcomp and Quip, but we
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can see CRAM and Goby are considerably larger on qual-
ity values and, where applicable, sequence identifiers. Note
however that both CRAM and Goby are random-access file
formats unlike Fastqz, Samcomp and Quip. This will ac-
count for some, but not all of the size difference. Speed-
wise recall that Fastqz is performing its own alignment while
the other tools are operating on already aligned SAM/BAM
files, making it hard to compare the overall performance.

In the context of the SequenceSqueeze competition it is
clear that the long identifiers hampered file sorting. The in-
clusion of the NCBI identifiers added an additional 25 bits
of data per identifier which could only be negated if the data
was kept in the original order. This ultimately lead to Sam-
comp2 being the competition winner in terms of compression
ratio, but it is arguably a weaker tool than the original Sam-
comp implementation. Generally sequencing data is either
in an unsorted FASTQ file or an aligned and hence sort-
able alignment file (e.g. BAM). Therefore we would not
advise general use of Samcomp2. It is commendable that
Quip was capable of running in all four categories listed in
Table 4 and while never reaching top compression it was
usually close (with deep data being the notable exception)
and with acceptable speed.

It is important to note the limitations of Samcomp. While
it uses SAM/BAM as input and output formats, it is not a
full SAM/BAM compressor. It was designed with the Se-
quenceSqueeze competition in mind and so primarily focuses
on identifiers, sequence and quality values. SAM flags and
mapping scores are also stored, but the SAM header, aux-
iliary fields and the template fields (columns 7-9) and not
preserved. For a fair comparison with other SAM compres-
sors we removed auxiliary fields and set columns 7-9 as “*”,
“0” and “0” respectively in all compression tests.

The results in Table 4 clearly indicate that the DNA se-
quence portion accounts for a minority of the disk space, yet
is the primary purpose for the file. An obvious corollary to
this is to consider whether we can lose or reduce the informa-
tion content of the identifiers and quality values. Sequence
identifiers have some initial use for detection of optical du-
plicates - the identifier typically encodes an X,Y location
too - but beyond this it is used solely as a device for pair-
ing sequences. The CRAM format solves this by removing
names and keeping only the pairing information. Likewise
the quality values may not need 40 separate levels for each
base. CRAM provides multiple lossy methods. Some work
has been done to evaluate the impact of using fewer quality
levels [8].

Both Fqzcomp and Fastqz contain basic methods to loss-
ily compress the quality strings, although Samcomp does
not. The programs behave in slightly different manners.
Fastqz rounds all quality above 1 to a multiple of Q where
Q is the quantisation factor. This reduces the number of
quality values and correspondingly increases the compres-
sion ratio. Fqzcomp has a similar approach, but instead
every value above Q is encoded within Q of the original
value, picking the value which happens to encode to the
fewest bits given the current context. For example a quality
value 37 with Q=2 could be encoded as 35, 36, 37, 38 or
39. In practise this amounts to the same binning system as
Fastqz unless the output is initially tuned on a few losslessly

encoded quality strings.

Methods

A FASTQ file consists of one or more sequences (typically
millions) with each sequence being represented by an iden-
tifier, the DNA base calls, and the quality or confidence of
each individual base call. A truncated example from the
competition training set is shown below.

@SRR062634.2724179 HWI-EAS110_103327062:6:13:11133:13696/1
TGGAATCAGATGGAATCATCGAATGGACTGGAATGGAATCATTGAATGGACTCGAAAGG
+
GGGFGGFDGGGGGGFGFGGGGGGGGGGGGGGEFGGGGFGEDGGGFGGGFEDFGCDFDG?
@SRR062634.2724180 HWI-EAS110_103327062:6:13:11133:11572/1
ATATAGTCCATTGTACTCCCTTGCTTAAATCTGGATCCCTGCAAATAAAAACATCTTCC
+
GGGGGGGGFGGGGEGGFGGGEGGFDGEAEGGEEEEBEEEEEEEEEEEEEEEEEEECCCC

Each read is described in four lines of text. The first
line, beginning with ‘@’, is an arbitrary text identifier. The
format is machine specific, but it is typically a unique iden-
tifier constructed by joining run/flow-cell name and location
(lane, X and Y coordinates) together. In this example, the
NCBI “SRR” identifiers have also been prepended to the
original sequence identifier. The second line holds the base
call sequence consisting of A, C, G and T nucleotides with
the occasional N. The third line consists of the ‘+’ charac-
ter optionally followed by a copy of the sequence identifier
(usually omitted). The fourth and final line holds the qual-
ity scores in Phred + 33 format [26], i.e. a character with
ASCII value 33 + 10 log10 1/p, where p is the probability of
error in the corresponding base and in the range 33 through
126 (‘!’ through ‘∼’). Other phred encodings exist, such as
Phred score + 64, but are deprecated and not considered in
this work. Practically speaking it is rare for Phred scores
greater than 40 (ASCII ‘I’) to be utilized. In the competi-
tion data (from an Illumina instrument) all sequences are of
the same length throughout the file, but this is not a require-
ment of the FASTQ format and some sequencing machines
generate variable length records.

In common with previous work, the Fqzcomp and Fastqz
programs both split FASTQ data into sequence identifiers,
base-calls and quality scores, compressing the streams in-
dependently and in most cases in parallel. Each stream
is passed through context models and into an arithmetic
coder [27].

We define an order−0 model to be one where probabilities
are derived from the frequency of symbols with no context.
An order−N model counts the frequency of symbols given
N previous symbols. For example an order-0 model may
assign P (u) = 0.03 for the letter ‘u‘ in English text, while
an order-1 model may assign P (u|q) = 0.97, where ‘q’ is
the context indicating that the letter ‘u’ is very frequent
following the letter ‘q’.

The context models predict (assign probabilities to) con-
secutive symbols given the previous context and statistics
collected within that context. If a symbol is assigned a
probability p, then the arithmetic coder chooses a code of
amortized length log2 1/p bits to represent it. This coding is
provably optimal [28]. Thus, compression ratio depends on
the quality of the predictions, p, in turn depending on the
accuracy of the context model.



7

Fqzcomp

Fqzcomp uses a public domain byte-wise arithmetic coder
from E. Shelwien (http://ctxmodel.net accessed on February
22, 2012). The context models are also derived from the
same source, but have been heavily tuned to the type of
data.

Identifiers

Fqzcomp compresses identifiers by using the previous iden-
tifier as a context to predict the current identifier. The iden-
tifier is tokenised into {type, value} pairs with type being one
of alpha, numeric, leading zeros or punctuation (including
spaces). For example:

@SRR0 62634 . 3364 HWI -EAS11 0 103327062 : 6 : 1 : 1944 : 962 / 2

The tokens are numbered 1 to N, producing N distinct
models for the purposes of accumulating token specific
statistics. When a token type is the same in the previous
identifier the value is compared. Identical tokens are stored
as type match while numerical values may be encoded as
delta tokens when the current value is between 0 and 255
higher than the previous numeric value. Numeric values up
to 232 are encoded using four 8-bit models with larger nu-
merical values being broken into 32-bit quantities to avoid
overflow. Alpha and punctuation tokens are encoded a char-
acter at a time using a simple order-0 model; one which
assumes each character is chosen independently and so re-
quires no context.

In practise this does not work well for 454 data which
mix a combination of letters and numbers together in or-
der to achieve a base-64 encoding. This tends to produce
a highly variable number of tokens. With hindsight an al-
phanumeric token type (matching [A-Za-z][A-Za-z0-9]*

regular expression) would have worked better. An earlier
identifier encoding method using simple string deltas is also
available, performing better on 454 data.

Quality values

To encode quality values, let Q1, Q2, ..., QL be the coded
quality scores for a sequence of length L.

For any specific score Qi there is a strong correlation to
the immediate previous few quality values Qi−1, Qi−2 less-
ening the further back we go. We observed that many se-
quences ended in a run of score 2 (“#”), corresponding to a
known issue with the Illumina base-caller [29].

All qualities are forced into the range 0 to 62, with 0
being exclusively required for bases called with “N”. Score
63 is used to represent a run of score 2 to the end of the
sequence.

Most technologies have correlation between position and
quality values, with quality typically reducing along the
length of the sequence. It was also noted that sequences
as a whole tend to be good or bad, so a sequence contain-
ing a number of low quality values is more likely to contain
further low qualities even if the immediately previous values
are high.

These correlations are combined to form successive levels
of quality compression in Fqzcomp, selected by the user.

Given Qi being the quality for the ith base, the contexts
used to predict Qi in Fqzcomp are:

• Qi−1

• max(Qi−2, Qi−3)

• [Qi−2 = Qi−3] (a single boolean bit)

• min

(
7,

⌊
1

8

i∑
j=2

max(0, Qj−2 −Qj−1)

⌋)
• min(7, bi/8c)

Sequence encoding

Fqzcomp encodes with an order-k model, using the previ-
ous k base calls to predict the next call. k is a configurable
parameter at run-time. Optionally the model can be up-
dated with the reverse complement of the previous k bases
too. This gives a small improvement in compression ratio,
but at a significant speed penalty. With high k the program
may learn the full genome, if sufficiently small. For example
it is to be expected that on a 100Mbp genome an order-14
model will be sparsely populated. Given sufficient depth the
14-mers in the model will represent the genomic sequence,
allowing for accurate prediction of the next base so yield-
ing high compression ratios. The same order-14 model on
3Gbp genome however will have many random hits for each
k-mer, only giving high accuracy within repeat regions and
leading to poor compression. It is expected that most com-
pression on large genomes is coming through common repeat
sequences.

Fqzcomp also has the option to use an additional fixed
size order-7 model, which is better for spotting short motifs
and sequencing biases. There is no mixing step used here.
Instead Fqzcomp encodes using the model containing the
strongest probability bias (to any base type, not just the
one being encoded). This is not very robust and is weak
compared to context mixing, but achieves a small compres-
sion gain with a small CPU overhead.

The models used in Fqzcomp permit encoding of symbols
0, 1, 2 and 3 representing A, C, G and T). Each model uses
8-bit counters, meaning the combined model takes k4 bytes.
Base call N is simply encoded as 0 and fixed during decoding
by observing that the associated quality value is 0 (this is
enforced).

Fastqz

Like Fqzcomp, Fastqz breaks the fastq file into three sep-
arate streams. However it contains an additional prepro-
cessing step before the context modelling to reduce the data
volume. This step is mainly a speed optimization and usu-
ally has a small cost in compression ratio.

The public domain libzpaq compression library
was used for specifying the context models for
the four streams in ZPAQ format (M. Mahoney,
http://mattmahoney.net/dc/zpaq.html accessed on May
3, 2012). ZPAQ uses a context mixing algorithm based
on PAQ [30] in which the bit-wise predictions of multiple
independent context models are adaptively combined.
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Identifiers

Differences between consecutive lines are encoded as a nu-
meric field increment in the range 0-255, a match length,
and trailing differences. For example, given the lines:

@SRR062634.2724180 HWI-EAS110_103327062:6:13:11133:11572/1
@SRR062634.2724181 HWI-EAS110_103327062:6:13:11133:5630/1

The second line is encoded as (18)(1)(51)”5630/1”(0),
which means go to column 18, add 1 to the decimal string
found there, then after this adjustment, copy the first 51
bytes, append the literal string, and terminate with a 0 byte
(replacing the newline). In rare cases where an increment of
more than 255 is required, then it is coded as a mismatch.

In fast mode, no further encoding is performed. In slow
mode, the encoded names are modelled using a mix of four
context models, each consisting of a hash of the column num-
ber, the current byte in the previous line, the previous bits
in the current byte, and the last 1, 2, 3, or 4 bytes in the
current line. The two low order models (1 and 2) map the
context to a bit prediction and are updated by adjusting the
prediction to reduce the error in inverse proportion to the
context count. The two high order models are indirect con-
text models. The context hash is mapped to an 8 bit state
representing the bit history. The history is then mapped
to an adaptively adjusted prediction. The outputs of the
four models are combined by weighted averaging in the lo-
gistic domain, log(p(1)/p(0)). The weights are selected by
an order 0 context that includes the column number, and
adjusted on update to favour the better models.

Quality values

It was observed that the initial Q values tended to start with
a common maximum value (38, ASCII “G”) and decline
along the length of the sequence.

Scores are compressed by using byte codes to indicate runs
of score 38 up to length 55, or groups of three scores in the
range 35-38, or pairs of scores in the range 31-38, or single
bytes for other scores, and finally a marker to indicate that
the rest of the scores are 2 and are omitted. In fast mode,
no further encoding is performed. In slow mode, the result-
ing codes are modelled using a mix of three direct context
models as follows:

1. hash of Qi−1,
⌊

i
8

⌋
2. hash of Qi−2,

⌊
Qi−3

32

⌋
3. hash of Qi−4,

⌊
Qi−5

8

⌋
4. mixing weights: hash of

⌊
Qi−1

8

⌋
,min(i, 3),

⌊
i
8

⌋
Sequence encoding

Fastqz starts by packing multiple base calls together, assign-
ing A=1, T=2, C=3 and G=4. The only other code is N,
which need not be coded because it always has a quality
score of 0 and can be inserted during decoding. We pack ei-
ther 3 or 4 bases together, whichever numerical packed value
does not exceed 255. The coding is such that any sequence
starting with G, CG, or CCG is coded in 3 bytes, but any

other sequence is 4 bytes. The benefit of using 1234 over
0123 comes through self synchronization, so that overlap-
ping reads that start at different locations will eventually be
parsed into the same token sequence to allow compression.
For example:

TGGA ATCA GAT GGA ATCA TCGA ATGG ACTG GAA TGGA ATCA

GGA ATCA GAT GGA ATCA TCGA ATGG ACTG GAA TGGA ATCA

GAAT CAGA TGGA ATCA TCGA ATGG ACTG GAA TGGA ATCA

AATC AGAT GGA ATCA TCGA ATGG ACTG GAA TGGA ATCA

In fast mode, no further encoding is performed. In slow
mode, the encoded sequence is compressed using a mix of 6
models ranging from order 0 through order 5 bytes, or effec-
tively order 4 through about 23 in bases. The order 0, 1, and
2 models are direct context models, using up to 225 contexts,
requiring 4 bytes of memory each. The order 3 model is an
indirect context model, requiring 228 histories at one byte
each. The order 4 model uses an indirect secondary symbol
estimator. It adjusts the output of the previous model by
mixing with the constant 1 in the logistic domain, where the
pair of mixing weights is selected by the bit history in one of
229 hashed contexts. The order 5 model uses a match model.
A bit prediction is made by searching for the previous occur-
rence of the context in a 256 MB buffer and predicting the
next bit with probability 1 - 1/(match length in bits). Con-
texts are looked up in a 256 MB hash table to find matches.
Total memory usage is about 1.4 GB.

In both Fqzcomp and Fastqz the compression ratio of deep
sequence data is strongly correlated with genome size, which
can be compensated for by using additional memory. This
is a problem which has partially been solved by [6].

Reference based encoding

The optimal compression of a set of sequence fragments in-
volves a full identification of the relationships between all
fragments; what their similarities are and whether they fit
together to form some higher level structure (the source
genome). This is largely the same problem solved by se-
quence assembly tools. One competitor, Daniel Jones, im-
plemented his own sequence assembly algorithm (Quip) to
permit data compression, but was largely hampered in the
test data by low coverage and a relatively limited memory
requirement.

If we have a known reference of the organism being se-
quenced we can instead implement a Lempel Ziv style com-
pression algorithm [31]. This replaces portions of text with
a coordinate and length into previously observed data, in
this case the reference genome. In bioinformatics the equiv-
alent are the sequence aligners or mappers, such as Smalt
(http://www.sanger.ac.uk/resources/software/smalt/
accessed on August 29, 2012), BWA [32] or Bowtie [33].

Fastqz will optionally accept a reference genome of up to
4 GB with which it performs its own reference based map-
ping. If specified it must be present for both compression
and decompression steps.

During compression, Fastqz will attempt to match se-
quences to the reference and encode them as a 32 bit pointer,
a direction bit, and a list of up to four mismatched base posi-
tions. Matched bases are deleted from the sequences before
compression and inserted after decompression.
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To find matches, the reference is first packed 4 bases per
byte using the code A=0, C=1, G=2, T=3 (deleting any
N’s) and stored in up to 1 GB memory. The reference is
divided into groups of 32 bases and a 1 GB hash table index
is constructed, consisting of 256M 27-bit pointers and 5 bit
hash checksums as an optimization to detect 97% of colli-
sions early. It searches 8 consecutive locations for an empty
slot, resulting in about 6% of pointers being discarded when
indexing a 2.9 Gb human genome in a 724 MB array.

To align, a rolling hash of the 100 byte reads is computed
in both directions, swapping A with T and C with G in re-
verse. Starting at position 32, the hash is looked up and
matches are ranked by the position of the fourth mismatch,
breaking ties with the third, second, and first. The best
ranked match is coded and the corresponding bases deleted
from the read. If the fourth mismatch is less than the read
length, then any remaining bases are coded as if not match-
ing. If the fourth mismatch is less than half the read length,
then the entire read is coded as if no match were found.

The list of alignments are coded in the format (m1 +
128d,m2,m3,m4, p3, p2, p1, p0) where mi is the position of
the ith mismatch in ascending order, or the read length + 1
with less than i mismatches, d is 0 for a forward match and
1 for a reverse match, and p3...p0 is the 4 byte pointer. An
unmatched read is coded as a single 0 byte.

In fast mode, the encoded list of alignments is not com-
pressed further. In slow mode, the list is compressed using
a direct context model where the context is the parse state,
the previous bits of the current byte, and the high 6 bits of
the previous byte except when encoding the 2 low bytes of
the pointer.

Samcomp1

The Samcomp program takes a slightly different approach
to Fastqz by offloading the issue of how to assemble or how
to align to a third-party program; we used Bowtie2 for the
competition but alternatives would work too.

The initial implementation (Samcomp v0.7) of this pro-
gram requires a SAM or BAM file sorted by chromosome
and position within the chromosome. Identifier and qual-
ity information is encoded as per Fqzcomp. For sequences
it uses the SAM flags, position and CIGAR string to an-
chor each called base to a reference coordinate and encodes
the base according to a per-coordinate model. As more and
more data aligns to a specific reference coordinate the model
improves in accuracy and the data compresses better. If a
reference is known it is used to seed the initial model prob-
abilities, otherwise they are seeded based on a low-order
consensus context (for example simple GC content observa-
tions). Insertions and soft-clipped data use their own addi-
tional models.

This has some distinct advantages over simply encoding
differences to a reference. Not requiring a reference avoids
the necessity of storing the consensus sequence produced by
a de-novo assembler. Given assemblies are typically deep,
the model tunes well and the data compresses almost as well
as supplying a reference, typically only taking up an extra
2 bits per consensus base. This is equivalent to shipping a
compressed copy of the reference with the file. Additionally

mapping to a closely related organism instead of the actual
reference would generate many more differences. The per-
position model will rapidly switch away from the claimed
reference to the observed consensus instead, improving com-
pression ratios. A similar gain can be seen when compressing
data with systematic base-calling errors.

Samcomp2

For the competition data set it was found that requiring
position sorted data harmed compression of the sequence
identifiers, so much so that the benefits of using a model
per position were non-existent. Ideally the sequence iden-
tifiers would be omitted or replaced with lower complex-
ity strings, but the SequenceSqueeze competition required a
strictly lossless approach.

A second implementation of Samcomp (Samcomp2 v0.2)
reads SAM files in any order, permitting the original name-
ordered file to be used thus giving highly compressible se-
quence identifiers. To achieve this in limited memory the
per-position model was removed and replaced by a simple
reference difference model. The difference model uses a bit
history of whether previous bases have been matching as
context. Upon a mismatch the base-call itself is encoded,
using the reference base as the context. This entry ulti-
mately came top for lossless compression ratio on the Se-
quenceSqueeze test data. However we feel it is not generally
as useful as the original Samcomp program as Samcomp2
performs less well on positional sorted data and extremely
badly when not supplied a reference.

Discussion

We have demonstrated that there is a compression ratio vs
speed and memory trade-off. For practical purposes saving
the extra remaining few percent of compression is generally
not worth it if you can get close to optimal compression in
a fraction of the time. This is very apparent in the original
SequenceSqueeze results when graphed on compression ratio
against time (see supplementary figure S1).

The trade-off will depend on the use case. For long-
distance data transfer such as uploading to the cloud, band-
width is the limiting factor. Here we can compress, trans-
fer and decompress in parallel with the total throughput
being governed by the slowest of the three. The software
presented here is ideally suitable for this task as the pro-
gram usage is transitory so long term support is not an is-
sue and additionally the requirement to immediately uncom-
press means it is easy to perform checksums to validate the
transfer. The tools presented here have best-in-class trade-
offs between time and compression ratio such that Fqzcomp
performs the best at low bandwidths and the fast mode of
Fastqz performs best at high bandwidths.

The opposite use case is long time archival. The programs
used need to be finalized and unchanging so the data can still
be accessed years from now. One solution is to archive the
programs along with the data, but more weight needs to be
given to proven robust technology.
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A final use case is for work-in-progress scenarios, requiring
regular random access within a sequencing pipeline. Fqz-
comp and Fastqz are only suitable for streaming, although
adding random access is one obvious future improvement.
However the bioinformatics community does not need yet
more file formats. Ideally the existing and emerging formats
(BAM, CRAM, cSRA) will incorporate ideas and methods
presented here, while keeping their random access strength.

The rate of exponential growth in sequencing compared to
disk technology and network bandwidth shows that any at-
tempt to compress data is simply an interim measure. Com-
pression buys us some time and it will always provide a cost
saving, but ultimately the sequencing community will need
to start prioritising data sets into those that are costly to
produce and/or precious, and those that are cheap to re-
produce. We envisage that in time many data sets will be
viewed purely as a temporary transition between the raw
DNA sample and final analysis, with file formats like VCF
becoming a more mainstream end product and likely the
topic of future compression research.

Conclusion

We have shown methods for efficient compression of the
three major components of FASTQ files and explained how
these can be applied to reference based formats. While not
the complete picture of SAM file compression, it is hoped
that the techniques presented here may be used to improve
existing SAM compressors.

We strongly believe that the creation of a public leader-
board in the SequenceSqueeze competition had a direct and
beneficial impact on the quality of all submissions. It was
not uncommon for authors to leap-frog existing competitor’s
entries, spurring them on to future improvements.
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