
Adaptive Weighing of Context Models for Lossless Data Compression

Matthew V. Mahoney

Florida Institute of Technology CS Dept.
150 W. University Blvd.

Melbourne FL 32901
mmahoney@cs.fit.edu

Technical Report CS-2005-16

Abstract
Until recently the state of the art in lossless data
compression was prediction by partial match (PPM). A
PPM model estimates the next-symbol probabilit y
distribution by combining statistics from the longest
matching contiguous contexts in which each symbol value
is found. We introduce a context mixing model which
improves on PPM by allowing contexts which are arbitrary
functions of the history. Each model independently
estimates a probabilit y and confidence that the next bit of
data will be 0 or 1. Predictions are combined by weighted
averaging. After a bit is arithmetic coded, the weights are
adjusted along the cost gradient in weight space to favor the
most accurate models. Context mixing compressors, as
implemented by the open source PAQ project, are now top
ranked on several independent benchmarks.

1. Introduction

The principle of Occam's Razor, applied to machine
learning, states that one should choose the simplest
hypothesis that fits the observed data. Hutter (2003),
building on the work of Solomonoff (1986), formalized
and proved this very general principle. Define an agent
and an environment as a pair of interacting Turing
machines. At each step, the agent sends a symbol to the
environment, and the environment sends a symbol and also
a reward signal to the agent. The goal of the agent is to
maximize the accumulated reward. Hutter proved that the
optimal behavior of the agent is to guess at each step that
the most likely program controlli ng the environment is the
shortest one consistent with the interaction observed so far.
 Unfortunately, this does not solve the general machine
learning problem. The algorithmic, or Kolmogorov,
complexity of a string, defined as the length of the shortest
program that outputs it, is not computable (Chaitin 1977).
Thus, machine learning is an art: approximate solutions
and heuristic methods are required..
 Lossless data compression is equivalent to machine
learning. In both cases, the fundamental problem is to
estimate the probabilit y p(x) of event x (coded as a string)
drawn from a random variable with an unknown (but
presumably computable) probabilit y distribution. Shannon
and Weaver (1949) proved that the minimum expected
code length of x given p(x) is log2 1/p(x) bits. Near-

optimal codes (within one bit) are known and can be
generated eff iciently, for example Huffman codes
(Huffman 1952) and arithmetic codes (Howard and Vitter
1992).

1.1. Text Compression and Natural Language
Processing
 An important subproblem of machine learning is natural
language processing. Humans apply complex language
rules and vast real-world knowledge to implicitly model
natural language. For example, most English speaking
people will recognize that p(recognize speech) > p(reckon
eyes peach). Unfortunately we do not know any algorithm
that estimates these probabiliti es as accurately as a human.
Shannon (1950) estimated that the entropy or information
content of written English is about one bit per character
(between 0.6 and 1.3) based on how well humans can
predict successive characters in text. The best data
compression programs achieve about 1.5 bits per character.
 Language models can be used to improve the accuracy
of speech recognition and language translation (Knight
1997), optical character recognition (Teahan et al. 1998),
and for spell checking and solving substitution ciphers
(Teahan and Cleary 1997). In each case, the problem is to
find output string y that maximizes p(y|x) for some input x.
By Bayes law, this is equivalent to maximizing p(x|y)p(y)
where p(x|y) is the inverse model (e.g. speech synthesis)
and p(y) is the language model.
 Compression ratio can be used to evaluate a language
model because it is minimized when the goal of matching
the modeled distribution to the true distribution is met.
However it is not the only function with this property.
Chen, Beeferman, and Rosenfeld (1998) tested a number
of proposed functions and did find that compression ratio
(specifically, word perplexity) is among the best predictors
of word error rate in speech recognition systems.

1.2. Online Modeling
 Data compression ought to be a straightforward
supervised classification problem. We are given a stream
of symbols from an unknown (but presumably
computable) source. The task is to predict the next symbol
(so that the most likely symbols can be assigned the

shortest codes). The training set consists of all of the
symbols already seen. This can be reduced to a
classification problem in which each instance is the
context, some function of the string of previously seen
symbols (for example, a suff ix of length n).
 There are many well known techniques for solving such
problems, for example, clustering, decision trees, neural
networks, genetic algorithms, support vector machines,
and so on. However, most data compressors do not use
these techniques because they require off line training, i.e.
multiple passes over the training set. A general purpose
data compressor must be online. The input is arbitrary, so
in general there cannot be any training data before the test
data begins to arrive.
 Until recently the best data compressors were based on
PPM, prediction by partial match (Bell , Witten and Cleary
1989) with arithmetic coding of the symbols. In PPM,
contexts consisting of suff ixes of the history with lengths
from 0 up to n (typically 5 to 8 bytes) are mapped to
occurrence counts for each symbol in the alphabet.
Symbols are assigned probabiliti es in proportion to their
counts. If a count in the n-th order context is zero, then
PPM falls back to lower order models until a nonzero
probabilit y can be assigned. PPM variants differ mainly in
how much code space is reserved at each level for unseen
symbols. The best programs use a variant of PPMZ
(Bloom 1998) which estimates the "zero frequency"
probabilit y adaptively based on a small context.
 One drawback of PPM is that contexts must be
contiguous. For some data types such as images, the best
predictor is the non-contiguous context of the surrounding
pixels both horizontally and vertically. For audio it might
be useful to discard the low order (noisy) bits of the
previous samples from the context. For text, we might
consider case-insensitive whole-word contexts.
Unfortunately, PPM does not provide a mechanism for
combining statistics from contexts which could be arbitrary
functions of the history.
 This is the problem we address in this paper. A context
mixing algorithm combines the predictions of a large
number of independent models by weighted averaging.
The weights are adjusted online to favor the most accurate
models. Compressors based on context mixing algorithms
are now top ranked on most published benchmarks.

2. Context Mixing Models

A context mixing model works as follows. The input data
is represented as a bit stream. For each bit, each model
independently outputs two numbers, n0, n1 ≥ 0, which can
be thought of as measures of evidence that the next bit will
be a 0 or 1, respectively. Taken together, it is an assertion
by the model that the next bit will be 0 with probabilit y
n0/n or 1 with probabilit y n1/n, where n = n0 + n1 is the
model's relative confidence in this prediction.

 Since models are independent, confidence is only
meaningful when comparing two predictions by the same
model, and not for comparing models. Instead we
combine models by weighted summation of n0 and n1 over
all of the models as follows:

 S0 = ε + Σi win0i = evidence for 0 (1)
 S1 = ε + Σi win1i = evidence for 1
 S = S0 + S1 = total evidence
 p0 = S0/S = probabilit y that next bit is 0
 p1 = S0/S = probabilit y that next bit is 1

where wi ≥ 0 is the weight of the i'th model, n0i and n1i are
the outputs n0 and n1 by the i-th model, and ε > 0 is a small
constant to guarantee that S0, S1 > 0 and 0 < p0, p1 < 1.

2.1. Updating the Mixing Weights
 After coding each bit, the weights are adjusted along the
cost gradient in weight space to favor the models that
accurately predicted this bit. Let x be the bit just coded.
The cost of optimally coding x is log2 1/px bits. Taking the
partial derivative of the cost with respect to each wi in (1),
with the restriction that weights cannot be negative, we
obtain the following weight adjustment:

 wi ← max[0, wi + (x --- p1)(Sn1i --- S1ni) / S0S1] (2)

where ni = n0i + n1i. The term (x --- p1) is the prediction
error.
 Experimentally, equation (2) was found to be
remarkably robust. The only tuning parameter is ε, and
even this has very littl e effect on compression ratio over a
wide range. Weights tend to grow at most logarithmically
because the term S0S1 in the denominator of (2) grows
along with the weights. The weights can either be
initialized to favor a-priori known better models, or simply
be set to 0 to allow rapid initial training.

2.2. Arithmetic Coding
The predictions from equation (1) are arithmetic coded.
The arithmetic code of a string x is the length of x together
with a number in the half-open interval [p<x, p<x + p(x)),
where p<x is the probabilit y that a string picked at random
is lexicographically less than x. There is guaranteed to be
a number in this interval with a base B encoding of not
more than 1 + logB 1/p(x) digits (Howard and Vitter 1992).
 When p(x) is expressed as a product of conditional
probabiliti es, p(x1x2...xn) = Πi p(xi | x1x2...xi-1) and the
alphabet is binary, then the arithmetic code may be
computed eff iciently as follows. Begin with the range
[0,1). For each bit xi, divide the range into two parts in
proportion to p0 and p1 from equation (1) and replace the
range with the subrange corresponding to pxi. In other
words, if the range is [low, high) and the probabilit y that xi
is 0 is p0, then the range is updated as follows:

 mid = low + p0(high --- low) (3)
 [low, high) ← [low, mid) if xi = 0
 [mid, high) if xi = 1

As the range shrinks, the leading digits of the base B
representations of low and high will match. These digits
may be output immediately. It is convenient to use base B
= 256 and represent each digit as a byte.

3. Modeling Nonstationary Data

Suppose that a certain context is observed n = 15 times and
the next-bit sequence in this context is 000000000011111.
What is the probabilit y p1 that the next bit will be a 1?
 The answer depends on what we assume about the
source. If we assume that the source is stationary
(statistics do not change over time) and that the trials are
independent (which seems unlikely from the given data)
then we would count n0 = 10 zeros and n1 = 5 ones and
guess p1 = n1/(n0 + n1) = n1/n = 1/3. We define a stationary
update rule for a context model as follows:

 Stationary Update Rule
 Initialize n0 = n1 = 0.
 If bit x is observed then increment nx.

A simpler explanation (as demanded by Occam's Razor)
might be that the source is not stationary, and that a state
change occurred after 10 bits. We will model
nonstationary sources as follows. We will predict that the
last outcome will repeat, with confidence proportional to
the number of consecutive repetitions. Essentially, we
discard any bit counts that disagree with the most recent
observation.

 Nonstationary Update Rule
 Initialize n0 = n1 = 0.
 If bit x is observed then increment nx and set n1-x = 0.

In the example above, n0 = 0 and n1 = 5. We would predict
p1 = 1 with confidence 5.
 In general, a source might or might not be stationary.
For example, a document may contain pure text
(stationary) or have embedded images (nonstationary). We
define the following semi-stationary update rule as a
compromise which empirically works well on a wide range
of data. Rather than keep all counts, or discard all counts
that disagree with the last observation, we discard about
half of the counts. Specifically, we keep at least two and
discard half of the rest, which has the effect of starting off
as a stationary model and becoming more nonstationary as
the counts grow.

 Semi-stationary Update Rule
 Initialize n0 = n1 = 0.
 If bit x occurs then
 increment nx
 if n1-x > 2 then set n1-x = floor(n1-x / 2 + 1).

For example, given the sequence 000000000011111 the
state (n0, n1) would be updated as follows:

 0000000000 (10, 0) p1 = 0, n = 10
 00000000001 (6, 1) p1 = 1/7, n = 7
 000000000011 (4, 2) p1 = 1/3, n = 6
 0000000000111 (3, 3) p1 = 1/2, n = 6
 00000000001111 (2, 4) p1 = 2/3, n = 6
 000000000011111 (2, 5) p1 = 5/7, n = 7

4. Implementation: The PAQ Project

The PAQ series of context mixing compressors were
developed as an open source project released under the
GNU general public license. Source code is available at
http://cs.fit.edu/~mmahoney/compression/

4.1. PAQ1
The first version, PAQ1, was developed in Jan. 2002 by M.
Mahoney. It uses the following contexts:
• Eight contexts of length 0 to 7 bytes as general

purpose models. All contexts also include the 0 to 7
bits of the current byte that precede the bit being
predicted.

• Two word-oriented contexts of length 0 or 1 whole
words preceding the currently predicted word (i.e.
unigram and bigram models). A word is a case-
insensitive sequence of the letters a-z.

• Two fixed-length record models for modeling two-
dimensional data such as images and databases. One
context is the column number and the other is the byte
above. The record length is determined by detecting a
series of 4 consecutive identical byte values with a
uniform stride.

• One match context, which finds the last matching
context of length 8 bytes or longer, and predicts
whatever bit followed the match.

All models except match use semi-stationary update. A
state (n0,n1) is represented as an 8 bit value using
probabili stic updates to estimate large counts. Models are
mixed as in equation (1) but the weights are fixed
constants tuned empirically. The eight general purpose
contexts of length n are weighted w = (n + 1)2.

4.2. Secondary Symbol Estimation (PAQ2)
In May 2003 S. Osnach wrote PAQ1SSE (or PAQ2) which
added SSE (secondary symbol estimation) after the mixer.
SSE is a 2-D table which inputs the probabilit y from the

mixer (quantized to 64 values non-uniformly with smaller
steps near 0 and 1) and a small 10-bit context (the partially
coded byte and match prediction) and outputs an improved
probability. After the bit is coded, the SSE table entry is
adjusted in proportion to the prediction error..
 In Sept. 2003, M. Mahoney wrote PAQ3, which
improved SSE by quantizing the input probability to 32
values with linear interpolation between adjacent table
entries.
 In Oct. 2003 S. Osnach wrote PAQ3N, adding three
sparse models --- two byte contexts that skip over
intermediate bytes. Additional context was added to SSE.

4.3. Adaptive Model Mixing (PAQ4-PAQ6)
PAQ4 by M. Mahoney in Oct. 2003 introduced adaptive
model weighting of 18 contexts as in Equation (2). The
mixer uses 8 sets of weights, selected by a 3 bit context
consisting of the 3 most significant bits of the previous
whole byte.
 PAQ5 in Dec. 2003 added a second mixer whose
weights were selected by a 4-bit context consisting of the
two most significant bits of the last two bytes. In addition,
six new models were added for analog data (8 and 16 bit
mono and stereo audio, 24-bit color images and 8-bit data).
These contexts discard low order (noisy) bits.
 PAQ6 in Dec. 2003 added nonstationary models (called
run-length models) in addition to the semi-stationary
updates for all models. A model was added for Intel
executable code that translates relative CALL operands to
absolute addresses in the context. There are also 10
general purpose contexts, 4 match models for long
contexts, 5 record models, 9 sparse models, 7 analog
models (including one for FAX images), and 6 word
models including sparse bigrams.
 In the first five months of 2004 there were 12 variations
of PAQ6 by Berto Destasio, which included additional
models, and changes to the semi-stationary update rule to
discard counts more quickly and give greater weight to
models in which one of the counts is 0. There were 7
versions by Fabio Buffoni, 2 by Johan De Bock, and 8 by
Jason Schmidt, primarily optimizations for speed, and 3 by
David A. Scott which improved the arithmetic coder.
Eugene Shelwein and Jason Schmidt provided optimized
compiles.

4.4. PAQAR
Between May and July 2004, Alexander Ratushnyak
released 7 versions of PAQAR which greatly improved
compression by vastly increasing the number of models at
the expense of speed and memory. The latest version,
PAQAR 4.0, uses 12 mixers with weights selected by
different contexts. Each mixer has its own SSE stage.
Those outputs are mixed by fixed weight averaging and
passed through 5 more parallel SSE units whose outputs
are again averaged. There are 10 general purpose contexts
of length 0 to 9, 4 match models, 12 record contexts, 17

sparse contexts, 9 analog contexts, 13 word contexts, and
34 contexts for FAX images (for pic in the Calgary
corpus). Models may be turned on or off when certain file
types are detected. The Intel executable context model
was replaced by a transform (filter) to change relative
CALL and JMP operands to absolute addresses.

4.5. Dictionary Preprocessing (PAsQDa)
Between Jan. and July 2005, Przemyslaw Skibinski
released 7 versions of PAsQDa which integrate a Word
Reducing Transform (WRT) (Skibinski, Grabowski and
Deorowicz 2005) into PAQ6 and PAQAR. WRT replaces
English words with a 1 to 3 byte code from a dictionary.
There are additional transforms to model punctuation,
capitalization, and end of lines.
 Malcolm Taylor added an independently implemented
context mixing algorithm called PWCM (PAQ Weighted
Context Mixing) to his commercial program, WinRK, in
2004, surpassing PAQAR and PAsQDa in many
benchmarks.

5. Experimental Results

Table 1 shows compression results for major releases of
PAQ and some popular and top ranked compressors (as of
Oct. 2005) on the 14 file Calgary corpus, a widely used
benchmark. The compression algorithm is shown in
parenthesis with "+d" to indicate dictionary preprocessing.
Options are selected for maximum compression. Files are
compressed into a single archive if possible, which allows
for modeling across files (solid mode). Compression times
are in seconds on a 750 MHz Duron with 256 MB memory
running Windows Me. Times marked with an asterisk are
for programs that exceeded 256 MB and are estimated as
3.6 times the actual time (based on empirical timing
comparisons) on an AMD 2800 with 1 GB memory.
 Table 1 includes compress, pkzip, gzip, and winrar
because of their popularity, sbc (S. Markinen,
http://sbcarchiver.netfirms.com/) as the top ranked BWT
compressor, and slim (S. Voskoboynikov,
http://www.bars.lg.ua/slim/) and durilca (D. Shkarin,
http://compression.ru/ds) as the top ranked PPM
compressors without and with dictionary preprocessing,
respectively. WinRK is the only compressor besides PAQ
to use context mixing. The other compression algorithms
are explained in the next section. Decompression times
for LZW, LZ77 and BWT are considerably faster than
compression, but are about the same for PPM and CM.

Table 1. Calgary corpus compression results

Program (type) Options Size Time
Original size 3,141,622
compress (LZW) 1,272,772 1.5
pkzip 2.04e (LZ77) 1,032,290 1.5
gzip (LZ77) -9 1,017,624 2
winrar 3.20 b3 (PPM) best 754,270 7
sbc 0.970r2 (BWT) -b8 ---m3 738,253 5.5
slim 0.021 (PPM) 658,494 156
durilca v.03a (PPM+d) readme 647,028 35
paq1 (CM) 716,704 68
paq2 (CM) adds SSE 702,382 93
paq4 (CM) adds eq.(2) 672,134 222
paq6 (CM) -6 648,892 635
paqar 4.0 (CM) -6 604,254 2127*
pasqda 4.1 (CM+d) -5 571,127 1586*
WinRK 2.0.1 (CM) pwcm 617,240 1275
WinRK 2.0.1 (CM+d) & dict 593,348 1107

5.1. Independent Benchmarks
Context mixing programs are top ranked by compression
ratio (but not speed) in five actively maintained,
independent benchmarks of general purpose lossless data
compression programs. Results change rapidly but are
current as of Nov. 14, 2005. All benchmarks below have
been updated within the last month.

5.1.1. Calgary Challenge. The Calgary challenge
(http://mailcom.com/challenge/) is a contest sponsored
since 1996 by Leonid A. Broukhis with nominal prize
money to compress the Calgary corpus. The size includes
the decompression program (contained in a standard
archive) in order to discourage dictionary preprocessing,
which otherwise artificially inflates a ranking by moving
information from the compressed data to the program. The
current record of 596,314 bytes is held by A. Ratushnyak
using a variant of PAsQDa with a tiny dictionary of about
200 words, set Oct. 25, 2005. The decompressor is semi-
obfusticated C++ source code.

5.1.2. Maximum Compression Benchmark. (W.
Bergmans, http://www.maximumcompression.com). This
tests 142 compression programs on 10 files of various
types totaling about 52 MB, with options set for best
compression. The top ranked compressor for nine of the
ten files were context mixing compressors (PAsQDa 4.1b
or WinRK 2.0.6/pwcm).

5.1.3. UCLC Benchmark. (J. de Bock, http://uclc.info).
This tests 92 programs on 8 data sets totaling about 172
MB. WinRK is top ranked on four and PAsQDa on two.
The other two data sets, grayscale images and audio, are
topped by specialized compressors.

5.1.4. Squeeze Chart Benchmark. (S. Busch
(http://www.maximumcompression.com/benchmarks/Squ-

eeze%20Chart%202005.pdf). This tests 156 programs
(including versions) on 16 data sets totaling about 2.5 GB.
Unlike the other benchmarks, the data was not released
(except for the Calgary and Canterbury corpora), to
discourage tuning compressors to the benchmarks. On this
set, WinRK 2.1.6 was top ranked on six, PAQAR on four,
PAsQDa on three, and slim on one.

5.1.5. EmilCont Benchmark. (B. Destasio
(http://www.freewebs.com/emilcont/). This evaluates 393
compression programs (including different versions) on 12
unreleased files (text, images, audio, executable code)
totaling 13 MB. By total size, the top 29 programs are
WinRK and PAQ variants, followed by slim. Context
mixing programs are top ranked on 10 of the 12 files.

6. Related Work

Lossless data compression originated in the 1830's with
Morse code, which assigns the shortest codes to the letters
occurring most frequently in English. Huffman (1952)
devised an algorithm for assigning code lengths to symbols
optimally given a probabilit y distribution, although this
code is not optimal in the sense of Shannon and Weaver
(1949) because code lengths must be integers. Arithmetic
coding (Howard and Vitter 1992) overcomes this
limitation by assigning a code to the entire string.
 The LZ family of codes (Ziv and Limpel 1978; Bell ,
Witten and Cleary 1989) are popular in spite of poor
compression relative to PPM and context mixing because
of their high speed, especially for decompression. The two
main variants are LZ77, used in gzip and zip, and LZW
used in GIF and UNIX compress. In LZ77, a repeated
substring is replaced with a pointer to a previous
occurrence. In LZW, a repeated substring is replaced with
an index into a dictionary of previously seen substrings.
 Compressors based on the Burrows-Wheeler transform
(BWT) (Burrows and Wheeler 1994) are almost as fast as
LZ and compress almost as well as PPM. A BWT
compressor sorts the input characters by context and
compresses the resulting stream with an adaptive order-0
model. A BWT model is equivalent to unbounded context
length PPM (Cleary, Teahan, and Witten 1995).
 PAQ1 is derived from an earlier compressor, P12, which
predicts a bit stream using a 2 layer neural network with
various contexts as inputs (Mahoney 2000). P12 is based
on an earlier 3-layer neural network model which was
trained off line by back propagation to predict text
(Schmidhuber and Heil 1996). P12 and PAQ incorporated
whole-word contexts based on an observation by Jiang and
Jones (1992) that using whole words rather than letters as
symbols improves text compression.
 Model mixing and sparse word contexts are based on
off line language models for speech recognition (Rosenfeld
1996). Order-2 and sparse word contexts were mixed
using the maximum entropy approach, an iterative
algorithm which converges to the most general distribution

that fits the training data. Kalai et al. (1999) describe
online algorithms for combining language models by
weighted averaging of probabiliti es. Weights are tuned
online to favor better models. PAQ differs in that the
submodels output a confidence in addition to a probabilit y.

7. Conclusion and Future Work

In this paper we describe an online algorithm for
combining arbitrary context models for binary strings that
output both a prediction and a confidence. We also
introduce a "semi-stationary" model which favors recent
history over older evidence and expresses a high
confidence in a prediction after a long string of all zeros or
all ones. These techniques have been implemented in
context mixing data compressors, which have now
replaced PPM-based compressors at the top of the rankings
of all of the major benchmarks.
 Context mixing algorithms allow compressors to push
the three way tradeoff between compression, speed, and
memory to the extreme. The top ranked compressors,
PAQAR, PAsQDa, and WinRK/pwcm, are 500 to 1000
times slower than popular compressors such as gzip, and
require hundreds of megabytes of memory. The reason is
the large number of models. Implementing context mixing
algorithms eff iciently remains a major challenge.

Acknowledgments

The PAQ project would not have been possible without
dedicated volunteer work spanning four years by the
developers mentioned in Section 4 and independent
evaluators mentioned in Section 5. The sole source of
funding for all i nvolved was US$517.17 in winnings from
the Calgary Challenge.

References

Bell , T.; Witten, I. H.; and Cleary, J. G. 1989. Modeling
for Text Compression. ACM Computing Surveys
21(4):557-591.

Bloom, C. 1998. Solving the Problems of Context
Modeling. http://www.cbloom.com/papers/ppmz.zip

Burrows M., and Wheeler, D. J. 1994. A Block-Sorting
Lossless Data Compression Algorithm. SRC Research
Report 124, Digital Systems Research Center.

Chaitin, G. J. 1977. Algorithmic Information Theory.
IBM Journal of Research and Development 21:350-359,
496.

Chen, S. F., Beeferman, D., and Rosenfeld, R.. 1998.
Evaluation Metrics for Language Models. In Proc.
DARPA Broadcast News Transcription and
Understanding Workshop.

Cleary, J. G.; Teahan, W. J., Witten, I. H. 1995.
Unbounded Length Contexts for PPM. In Proc. Data
Compression Conference:52-61.

Howard, P. G., and Vitter, J. S. 1992. Analysis of
Arithmetic Coding for Data Compression. Information
Processing and Management 28(6):749-763.

Huffman, D. 1952. A Method for the Construction of
Minimum-Redundancy Codes. Proc. I.R.E.: 1098-1101.

Hutter, M. 2003. A Gentle Introduction to The Universal
Algorithmic Agent { AIXI} . In Artificial General
Intelligence, Goertzel B., and Pennachin C., eds.,
Springer.

Jiang, J. and Jones S. 1992. Word-based Dynamic
Algorithms for Data Compression’’ , IEE Proc.
Communication, Speech, and Vision 139(6):582-586.

Kalai, A..; Chen, S.; Blum, A.; and Rosenfeld R. 1999.
On-line Algorithms for Combining Language Models.
In IEEE Proc. Intl. Conf. on Acoustics Speech, and
Signal Processing, 745-748.

Knight, K. 1997. Automatic Knowledge Acquisition for
Machine Translation. AI Magazine 18(4):81-96.

Mahoney, M. 2000. Fast Text Compression with Neural
Networks. In Proc. FLAIRS, Orlando FL.

Rosenfeld, R. 1996. A Maximum Entropy Approach to
Adaptive Statistical Language Modeling. Computer,
Speech and Language 10.

Schmidhuber, J. and Heil , S. 1996. Sequential Neural Text
Compression. IEEE Trans. on Neural Networks
7(1):142-146.

Shannon, C., and Weaver, W. 1949. The Mathematical
Theory of Communication. Urbana: University of
Illi nois Press.

Shannon, C. 1950. Prediction and Entropy of Printed
English. Bell Sys. Tech. J. 3:50-64.

Skibinski, P.; Grabowski, S.; and Deorowicz, S. 2005.
Revisiting Dictionary-Based Compression. To appear in
Software --- Practice and Experience. Wiley.

Solomonoff , R. 1986. The Application of Algorithmic
Probabilit y to Problems in Artificial Intelli gence. in: M.
Kochen and H. M. Hastings (Eds.), Advances in
Cognitive Science, AAA S Selected Symposia Series,
AAA S, Washington, D.C.:210-227, also in: L.N. Kanal
and J.F. Lemmer (Eds.), Uncertainty in Artificial
Intelligence, Elsevier Science Publishers B.V.:473-491.

Teahan, W. J., and Cleary, J. G. 1997. Models of English
Text. IEEE Proc. Data Compression Conference:12-21.

Teahan, W. J.; Englis, S.; Cleary J. G.; and Holmes G.
1998. Correcting English Text using PPM Models.
IEEE Proc. Data Compression Conference: 289-298.

Ziv, J. and Limpel, A. 1978. Compression of Individual
Sequences via Variable-Rate Coding. IEEE Trans.
Information Theory 24(5):530-536.

